ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
Years
  • 1
    Publication Date: 2023-07-18
    Description: A multi-scale modelling system was developed to provide hourly NOx concentrations field at building resolving scale in the urban area of Modena. The WRF-Chem model was employed with aim of reproducing local background concentrations taking into account meteorological and chemical transformation at regional scale, conversely the PMSS modelling system was applied to simulate 3D air pollutant dispersion with a very high-resolution (4 m) on a 6 km x 6 km domain. Modelled NOx concentrations reproduced by this modelling system show a good agreement with observation at both traffic and background urban stations.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-18
    Description: A multi-scale modelling system was developed to provide hourly NOx concentration fields at a building-resolving scale in the urban area of Modena, a city in the middle of the Po Valley (Italy), one of the most polluted areas in Europe. The WRF-Chem model was applied over three nested domains and employed with the aim of reproducing local background concentrations, taking into account meteorological and chemical transformation at the regional scale with nested resolutions of 15 km, 3 km and 1 km. Conversely, the PMSS modelling system was applied to simulate 3D air pollutant dispersion, due to traffic emissions, with a very high-resolution (4 m) on a 6 km × 6 km domain covering the city of Modena. The methodology employed to account for anthropogenic emissions relies on two different strategies. Traffic emissions were based on a bottom-up approach using emission factors suggested by the European Environmental Agency with traffic fluxes estimated by the PTV VISUM model in the urban area of Modena, combined with direct traffic flow measurements performed between October 28 and November 8, 2016 which was used for the hourly vehicle modulation. Other anthropogenic emissions were taken from the TNO-MACC III inventory at the scales resolved by the WRF-Chem model. Simulations were performed for the same period whereby the traffic measurement campaign was carried out. 2 m temperature and 10 m wind speed were captured quite well by the WRF-Chem model with statistical metrics in line with similar case studies related to the Northern Italy. The NOx concentrations reproduced in the Po Valley area by WRF-Chem were on average simulated reasonably well with a general negative bias in almost all the examined rural background monitoring stations. Additionally, the deployment of an emission inventory at the original resolution (7 km) highlighted that increasing resolution from 3 km to 1 km does not generally improve the model performance. Nevertheless, simulated and observed NOx hourly concentrations in the urban area of Modena exhibit a large agreement in particular for urban traffic site where detailed traffic emission estimations proved to be very successful in reproducing the observed NOx trend. At urban background stations, despite a general underestimation of the observed concentrations, the combination of WRF-Chem with PMSS provided daily pattern in line with observations. The analysis of the modelled NOx daily cycle pointed out also that at both traffic and background urban stations the morning NOx peak concentration was on average underestimated. This could be explained with an overestimation of mixing phenomena between 07:30 a.m. and 10:00 a.m. by WRF-Chem which leads to a greater dispersion of NOx along the vertical and thus a morning underestimation. The statistical analysis showed finally that PMSS combined with WRF-Chem at both the resolutions (3 km and 1 km) and at both traffic and background sites fulfilled standard acceptance criteria for urban dispersion model evaluation, confirming that the proposed multi-modelling system can be employed as a tool to support environmental policies, epidemiological studies and urban mobility planning.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-07-18
    Description: Operational forecasting systems based on chemical transport models (CTMs) nowadays generally produce concentration maps with a resolution in the order of 2–5 km, very rarely exceeding the sub-kilometre scale. The main reason for this restriction is the prohibitive computing cost that a simulation covering an entire country would have if set-up with a resolution in the order of meters. In this paper a hybrid forecast system, relying on the WRF-Chem model coupled with the PMSS Lagrangian modelling suite, has been developed and applied for each day of February 2019, to predict hourly NO2 and NOx concentrations with a spatial resolution of 4 m, for the urban area of Modena (a city located in the central Po Valley). Simulated meteorological fields (temperature, wind speed and direction) were assessed at three urban stations, compliant with WMO standards, and modelled concentrations were compared with measurements at two urban air quality stations located at background and traffic sites. Results show that meteorological variables are well captured by the hybrid system and statistical performances are in line with the benchmark values suggested by the European Environmental Agency and with similar case studies focusing on the same area. Modelled NO2 and NOx concentrations, notwithstanding a slight underestimation mainly evident at urban traffic stations for NOx, present a large agreement with related observations. The NO2 Model Quality Objective, as defined by Fairmode guidelines, was met for both the urban stations and the other statistical indexes considered in the evaluation fulfilled the acceptance criteria for dispersion modelling in urban environment, for both NO2 and NOx concentrations. In the second section of the study, the population exposure to forecasted NO2 concentrations has been evaluated adopting a generic model of dynamic population activity. The population was distributed at hourly time steps in specific urban micro-environments at the same resolution of the concentration maps (4 m) and the short-term exposure has been computed as the product between the population density in each model cell and related surface NO2 concentrations. An infiltration factor was also applied to estimate indoor concentrations. The hybrid system was shown to be particularly suited for assessing short-term peak exposure in areas influenced by traffic emissions. On the other hand, due to the limited time spent by the population within traffic related environments, the long-term population exposure calculated by the hybrid system tends to be similar to the WRF-Chem stand-alone estimate.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...