ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-26
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth System Dynamics 9 (2018): 593-609, doi:10.5194/esd-9-593-2018.
    Description: Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.
    Description: Financial support from NSF, NEON, LTER, and CZO made this collaboration possible. Henry W. Loescher and Samantha R. Weintraub acknowledge the National Science Foundation (NSF) for ongoing support. NEON is a project sponsored by the NSF and managed under cooperative support agreement (EF-1029808) to Battelle. Roland Baatz, Steffen Zacharias, and Ingolf Kühn acknowledge the European Union’s Horizon 2020 research and innovation program grant agreement no. 654359 (eLTER Horizon 2020). Furthermore the work was supported by the Terrestrial Environmental Observatories (TERENO), which is a joint collaboration program involving several Helmholtz Research Centers in Germany.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Weynants, Melanie; Vereecken, Harry; Javaux, Mathieu (2009): Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model. Vadose Zone Journal, 8(1), 86-95, https://doi.org/10.2136/vzj2008.0062
    Publication Date: 2020-02-01
    Description: We revisited the Vereecken database, which has been used to derive pedotransfer functions (PTFs) to estimate the soil hydraulic parameters of Belgian soils. We developed new PTFs based on the Mualem-van Genuchten model, constraining m = 1 - 1/n and using fewer parameters. The goodness-of-fit was similar to the one originally obtained by Vereecken. We used a one-step procedure that allows direct quantification of the correlation matrix and the uncertainties of the estimated parameter values. The coefficients of the new PTFs were estimated using a global search algorithm and they were validated against independent data. The PTFs have a wider range of applicability since: (i) they allow the use of the closed-form solution of the unsaturated hydraulic conductivity in the Mualem-van Genuchten model; and (ii) they consider the effect of macroporosity. We determined that the hydraulic conductivity measured close to saturation could not be estimated based on the available estimators; however, the hydraulic conductivity in the matrix domain was predicted with high accuracy.
    Type: Dataset
    Format: application/zip, 108.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-16
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-11-05
    Description: The purpose of this study was to quantify the downstream impacts of different types of small dams on summer water temperature in lowland streams. We examined (1) temperature regimes upstream and downstream of dams with different structural characteristics, (2) relationships between stream temperature anomalies and climatic variables, watershed area, dam height, impoundment length and surface area, and residence time, (3) the most significant variables explaining the different thermal behaviors, and (4) the dam thermal effect considering a biological threshold of 22 ∘C, with a calculation of both the number of days with a temperature above this threshold and the average hourly duration above this threshold. Water temperature loggers were installed upstream and downstream of 11 dams in the Bresse region (France) and monitored at 30 min intervals during summer (June to September) over the 2009–2016 period, resulting in 13 paired water temperature time series (two sites were monitored for two summers, allowing the opportunity to compare cold and hot summers). At 23 % of the dams, we observed increased downstream maximum daily temperatures of more than 1 ∘C; at the remaining dams we observed changes in the maximum daily temperature of −1 to 1 ∘C. Across sites, the mean downstream increase of the minimum daily temperature was 1 ∘C, and for 85 % of the sites this increase was higher than 0.5 ∘C. We hierarchically clustered the sites based on three temperature anomaly variables: upstream–downstream differences in (1) maximum daily temperature (ΔTmax), (2) minimum daily temperature (ΔTmin), and (3) daily temperature amplitude (ΔTamp). The cluster analysis identified two main types of dam effects on thermal regime: (1) a downstream increase in Tmin associated with Tmax either unchanged or slightly reduced for impoundments of low volume (i.e., a residence time shorter than 0.7 d and a surface area less than 35 000 m2), and (2) a downstream increase of both Tmin and Tmax of the same order of magnitude for impoundments of larger volume (i.e., a residence time longer than 0.7 d and a surface area greater than 35 000 m2). These downstream temperature increases reached 2.4 ∘C at certain structures with the potential to impair the structure of aquatic communities and the functioning of the aquatic ecosystem. Overall, we show that small dams can meaningfully alter the thermal regimes of flowing waters, and that these that these effects can be explained with sufficient accuracy (R2=0.7) using two simple measurements of small dam physical attributes. This finding may have importance for modelers and managers who desire to understand and restore the fragmented thermalscapes of river networks.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2018-03-06
    Description: In this paper, we present and analyze a global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database, for the first time. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and USA. In addition to its global spatial coverage, the collected infiltration curves cover a time span of research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use were gathered along with the infiltration data, which makes the database valuable for the development of pedo-transfer functions for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76 %) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on the land use is available for 76 % of experimental sites with agricultural land use as the dominant type (~40 %). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for use by public domain only and can be copied freely by referencing it. Supplementary data are available at doi:10.1594/PANGAEA.885492. Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend/update the SWIG by uploading new data to it.
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-04-09
    Description: The purpose of this study was to quantify the downstream impacts of different types of small dams on summer water temperature in lowland streams. We examined: (i) temperature regime upstream and downstream dams of different structural characteristics; (ii) relationships between stream temperature anomalies and climatic variables, watershed area, dam height, impoundment length and surface and residence time; (iii) the more significant variables explaining the different thermal behaviours, in order to account for dam diversity and functioning in future regional stream temperature models. Water temperature loggers were installed upstream and downstream 11 dams in the Bresse Region (France) and monitored at 30 min intervals during summer period (June to September), from 2009 to 2016 depending on the sites (2 sites were monitored during 2 summers, others only 1 summer, resulting in 13 time-series), with the opportunity to compare cold and hot summers. The small dams altered the downstream thermal regime for 23 % of the time-series with a 〉 1 °C elevation of the maximum daily temperature; for 77 % the range was in between −1 °C and +1 °C. The mean increase of the minimum daily temperature was 1 °C, with 85 % of the time-series showing an increase 〉 0.5 °C. The sites are grouped in three main types with specific responses of different temperature variables (maximum daily temperature (T max), minimum daily temperature (T min) and daily temperature amplitude). Two main types of impact were identified: an increase in the daily minimum temperatures associated with stability and even a slight reduction of the daily maximum temperatures for impoundments of low volume (residence time shorter than 0.7 day and an impoundment surface area smaller than 35 000 m2); and an increase of the daily minimum and maximum temperatures in the same orders of magnitude when the surface area of the impoundment is larger than 35 000 m2 and the residence time is longer than 0.7 day. This increase can reach 2.4 °C at certain structures and could impact the structure of aquatic communities and the functioning of the aquatic ecosystem. These determinants are candidate to generalize results, but this would necessitate the gathering of more precise information than the current dam descriptors in public databases.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-05-23
    Description: Advancing our understanding of Earth system dynamics (ESD) depends on the development of models and other analytical tools that apply physical, biological, and chemical data. This ambition to increase understanding and develop models of ESD based on site observations was the stimulus for creating the networks of Long-Term Ecological Research (LTER), Critical Zone Observatories (CZOs), and others. We organized a survey, the results of which identified pressing gaps in data availability from these networks, in particular for the future development and evaluation of models that represent ESD processes, and provide insights for improvement in both data collection and model integration. From this survey overview of data applications in the context of LTER and CZO research, we identified three challenges: (1) widen application of terrestrial observation network data in Earth system modelling, (2) develop integrated Earth system models that incorporate process representation and data of multiple disciplines, and (3) identify complementarity in measured variables and spatial extent, and promoting synergies in the existing observational networks. These challenges lead to perspectives and recommendations for an improved dialogue between the observation networks and the ESD modelling community, including co-location of sites in the existing networks and further formalizing these recommendations among these communities. Developing these synergies will enable cross-site and cross-network comparison and synthesis studies, which will help produce insights around organizing principles, classifications, and general rules of coupling processes with environmental conditions.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-10
    Description: In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (∼76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76% of the experimental sites with agricultural land use as the dominant type (∼40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it.
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-01-19
    Description: A recent paper in Reviews of Geophysics describes how currently available soil information furthers our understanding of soil processes and their integration in Earth system modeling.
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...