ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Inter-Research, 2005. This article is posted here by permission of Inter-Research for personal use, not for redistribution. The definitive version was published in Marine Ecology Progress Series 303 (2005): 295-310, doi:10.3354/meps303295.
    Description: Selective tidal stream transport is hypothesized as a dominant mechanism by which larvae of marine animals move through estuarine openings. For larvae moving from the shelf to estuarine habitats, selective tidal stream transport proposes that larvae are higher in the water column during flood tide and lower in the water column during ebb tide. Although a number of studies conclude that selective tidal stream transport is the mechanism responsible for larval ingress, few studies consider alternative mechanisms or consider passive explanations for tidal patterns in larval distributions. We examined the biophysical mechanisms responsible for larval ingress into Chesapeake Bay using an Eulerian approach. We made flux calculations for 3 species and partitioned flux estimates among 3 different ingress mechanisms (wind forcing, residual bottom inflow and tidal). For the Atlantic croaker Micropogonias undulatus (Sciaenidae), all 3 mechanisms of ingress contributed to the net up-estuary flux of larvae, but tidal mechanisms become more important for larger sizes. Net up-estuary flux of the Atlantic menhaden Brevoortia tyrannus (Clupeidae) was dominated by residual bottom inflow and wind forcing. Ingress of the summer flounder Paralichthys dentatus (Paralichthyidae) was dominated by tidal mechanisms, and the importance of tides increased with developmental stage. We found little evidence for the hypothesis that tidal patterns in larval distributions resulted from passive processes (water mass-specific distributions, buoyancy, vertical mixing), thereby supporting the hypothesis that tidal patterns resulted from active behaviors. However, our estimates of vertical mixing were not direct and additional work is needed to examine the role of vertical mixing in influencing vertical distributions in areas with strong tides. We conclude that a combination of wind forcing, residual bottom inflow, and selective tidal stream transport are responsible for the ingress of larval fishes into Chesapeake Bay, and that the relative importance of the 3 mechanisms differs among species and changes with larval development.
    Description: Funding for this project was provided by the National Science Foundation through OCE 9876565 to C.J., S.T., A.V.-L., and J.A.H. Time on the NOAA ship ‘FERREL’ was provided by Virginia Sea Grant through NA56RG0489 to A.V.-L.
    Keywords: Selective tidal stream transport ; Estuarine circulation ; Wind-induced exchange ; Larval ingress ; Recruitment ; Larval fishes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Buchan, S. J., Perez-Santos, I., Narvaez, D., Castro, L., Stafford, K. M., Baumgartner, M. F., Valle-Levinson, A., Montero, P., Gutierrez, L., Rojas, C., Daneri, G., & Neira, S. Intraseasonal variation in southeast Pacific blue whale acoustic presence, zooplankton backscatter, and oceanographic variables on a feeding ground in Northern Chilean Patagonia. Progress in Oceanography, 199,(2021): 102709, https://doi.org/10.1016/j.pocean.2021.102709.
    Description: Seasonal variation in the acoustic presence of blue whale calls has been widely reported for feeding grounds worldwide, however variation over the submonthly scale (several days to 〈1 month) has been examined to a much lesser extent. This study combines passive acoustic, hydroacoustic, and in situ oceanographic observations collected at a mooring in the Corcovado Gulf, Northern Chilean Patagonia, from January 2016-February 2017, to examine the temporal variation in blue whale acoustic occurrence and prey backscatter over seasonal and submonthly scales. Time series data for a) Southeast Pacific blue whale song calls and D-calls, b) zooplankton backscatter, c) tidal amplitude, and d) meridional and zonal wind stress were examined visually for seasonal trends. To examine submonthly timescales over the summer feeding season (January-June), wavelet transforms and wavelet coherence were applied; generalized linear models (GLM) were also applied. There was a 3-month lag between the seasonal onsets of high zooplankton backscatter (October) and blue whale acoustic presence (January), and an almost immediate drop in blue whale acoustic presence with the seasonal decrease of backscatter (June). This may be due to the use of memory by animals when timing their arrival on the feeding ground, but the timing of their departure may be related to detection of low prey availability. Over the summer feeding season, blue whale acoustic presence was strongly associated with zooplankton backscatter (GLM coefficient p ≪ 0.0001). Song calls followed a seasonal cycle, but D-calls appeared to respond to short term variations in environmental conditions over submonthly scales. Results suggest that spring tides may increase prey aggregation and/or transport into the Corcovado Gulf, leading to increased blue whale acoustic presence over 15-day or 30-day cycles; and short-lived events of increased wind stress with periodicities of 2–8 days and 16–30 days, may also contribute to the aggregation of prey. We discuss the strengths and limitations of coupling passive and active acoustic data to examine drivers of blue whale distribution.
    Description: Financial support was provided by Centro COPAS Sur-Austral ANID AFB170006 and COPAS Coastal FB10021 https://www.anid.cl/, and Office of Naval Research Global and Office of Naval Research grant N00014-17-1-2606.
    Keywords: Blue whales ; Euphausiids ; Passive acoustics ; Active acoustics ; Estuaries ; Backscatter ; Tidal forcing ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-01-01
    Print ISSN: 0916-8370
    Electronic ISSN: 1573-868X
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2016-05-10
    Description: Submarine groundwater discharge provides freshwater and nutrients to coastal environments. In some places throughout the world, this direct connection between aquifers and oceans may also allow saltwater intrusion. Saltwater intrusion was studied at a submarine spring within a fringing reef lagoon on the eastern Yucatán Peninsula by observing its intratidal and synoptic-scale variations during wet and dry periods. Saltwater intrusion was linked to wave-driven setup, no rain, high tides, and sea-level rise caused by remote forcing from Yucatán Current variability. Jet discharge velocities were inversely related to tidal oscillations, with maximum velocities at low tides. The wet period produced saltwater intrusion at high tides associated with three different conditions: syzygy tides, wave setup, and Yucatán Current weakening. During the dry period, saltwater intrusion occurred throughout most high tides and was aided by Yucatán Current weakening and wind-driven setup within the lagoon. These results suggested that seasonal precipitation was most important in modulating spring discharge, followed by syzygy tides, Yucatán Current variability, and wave events. The spring discharge was modeled with a modified Bernoulli energy equation that included a friction term. Aquifer elevation and a friction factor were used as free parameters. The dry period produced the best model results because of infrequent rainfall that yielded a relatively steady aquifer level. Precipitation during the wet period most likely led to a more variable aquifer level, reducing the variance explained by the model that assumes a constant aquifer elevation. Nevertheless, the model predicted saltwater intrusion events reasonably well using simplified physics.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-05
    Description: [1]  The role of asymmetric tidal mixing (ATM) in subtidal estuarine dynamics is investigated using a series of generic numerical experiments that simulate narrow estuaries under different stratification and external forcing conditions. The focus is on quantifying the characteristics of ATM-induced flow and its contributions to stratification and salt transport. The flow induced by ATM has a two-layer vertical structure in periodically stratified estuaries, similar to that of the density-driven flow. It has a three-layer vertical structure in the central regime of weakly stratified estuaries, and a reverse two-layer structure in highly stratified estuaries. The changes in vertical distribution of ATM-induced flows result from the influence of stratification on the covariance of eddy viscosity and vertical shear. Such covariance represents the driving force of ATM-induced flow in the tidally averaged momentum equation. Compared to density-driven flow, ATM-induced flow dominates in periodically stratified estuaries with strong tides, has the same order of magnitude in weakly stratified estuaries with moderate tides, and is less important in highly stratified estuaries with weak tides. In contrast to density-driven flow that always increases estuarine stratification and transports salt landward, the ATM-induced flow exhibits different behaviors because of its varying vertical structure. In estuaries with strong tides, ATM-induced flow tends to enhance stratification and to transport salt landward, similar to density-driven flow. In estuaries with weak tides, ATM-induced flow tends to reduce stratification and to transport salt seaward.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-05-15
    Description: Microstructure and current velocity measurements were collected at a cross-channel transect in the James River under spring and neap tidal conditions in May 2010 to study cross-estuary variations in vertical mixing. Results showed that near-surface mixing was related to lateral circulation during the ebb phase of a tidal cycle, and that the linkage was somewhat similar from neap to spring tides. During neap tides, near-surface mixing was generated by the straining of lateral density gradients influenced by the advection of fresh, riverine water on the right side (looking seaward) of the transect. Spring tide results revealed similar findings on the right side of the cross-section. However on the left side, the straining by velocity shears acted in concert with density straining. Weak along-estuary velocities over the left shoal were connected to faster velocities in the channel via a clockwise lateral circulation (looking seaward). These results provided evidence that in the absence of direct wind forcing, near-surface vertical mixing can occur from mechanisms uncoupled from bottom friction. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-17
    Description: The Grand LAgrangian Deployment (GLAD) used multi-scale sampling and GPS technology to observe time series of drifter positions with initial drifter separation of O(100 m) to O(10 km), and nominal 5 minute sampling, during the summer and fall of 2012 in the northern Gulf of Mexico. Histograms of the velocity field and its statistical parameters are non-Gaussian; most are multi-modal. The dominant periods for the surface velocity field are 1-2 days due to inertial oscillations, tides, and the sea breeze; 5-6 days due to wind forcing and submesoscale eddies; 9-10 days and two weeks or longer periods due to wind forcing and mesoscale variability, including the period of eddy rotation. The temporal e -folding scales of a fitted drifter velocity autocorrelation function are bimodal with time scales, 0.25-0.50 days and 0.9-1.4 days, and are the same order as the temporal e -folding scales of observed winds from nearby moored National Data Buoy Center stations. The Lagrangian integral time scales increase from coastal values of 8 hours to offshore values of approximately 2 days with peak values of 3-4 days. The velocity variance is large, O (1) m 2 / s 2 , the surface velocity statistics are more anisotropic, and increased dispersion is observed at flow bifurcations. Horizontal diffusivity estimates are O (10 3 ) m 2 / s in coastal regions with weaker flow to O (10 5 ) m 2 / s in flow bifurcations, a strong jet, and during the passage of Hurricane Isaac. The Gulf of Mexico surface velocity statistics sampled by the GLAD drifters are a strong function of the feature sampled, topography, and wind forcing. This article is protected by copyright. All rights reserved.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-02-13
    Description: [1]  The influence of bathymetry on an estuary plume at an estuary-shelf transition is studied with a three-dimensional ocean circulation model. To understand the response of the plume to bathymetry, several types of estuarine shapes and shelf geometries were adopted in this numerical study. The channel's shape and its width-to-depth aspect ratio affected the fate of the plume by determining flow characteristics inside the estuary. Moreover, the bathymetry of the shelf such as the shelf slope and the direction of a submarine channel defined the plume characteristics on the shelf. An estuarine channel with a triangular cross-section generated relatively stronger exchange flows at mid-estuary than a rectangular cross-section, which resulted in a larger surface plume over the shelf. The extension of the submarine channel onto the shelf favored increased plume water transport out to the shelf, a result of reduced frictional effects on the shelf. The orientation of the submarine channel changed the direction of the plume over the shelf, with no additional external forces. Two fronts developed at the edges of the submarine channel because of enhanced lateral shears in the flow. When the estuary was relatively wide compared to the internal Rossby radius (Kelvin number Ke  ≥ 5), or when the relative strength of the freshwater discharge compared to the estuary width was weak (Rossby number Ro  ≤ 0.05), the coastal plume did not expand up-shelf. In fact, results indicated that freshwater up-shelf transport in a coastal current, moving against Coriolis’ accelerations, was proportional to Ro .
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-02-16
    Description: [1]  [1] Current velocity observations from the continental shelves of Coquimbo (~30°S) and Concepcion (~36°30' S), central Chile, were analyzed to evaluate the role of water column stratification and shelf width on baroclinic semidiurnal tidal currents. Semidiurnal barotropic currents off both zones were typically 〈 5 cm/s but depth-dependent semidiurnal flows could exceed 10 cm s -1 during stratified conditions. Both zones are recognized as pronounced upwelling centers, with maximum upwelling-favorable winds in spring and summer, respectively. At the northern zone, stratification was mainly controlled by temperature differences between surface and bottom waters with maximum stratification during summer. The southern zone showed more stratification during winter, because of freshwater input from local rivers. Consequently, greater variability in the baroclinic semidiurnal currents was observed during summer at the northern continental shelf and in winter at the south. In both regions, much of the semidiurnal variability was consistent with an internal wave's first baroclinic mode of wavelengths of ~10-13 km. Nevertheless, during the period of maximum energy fluxes off the north, the second baroclinic mode (wavelength ~7 km) was also important, and matched periods of low upwelling index (relaxation of upwelling-favorable winds). Typical energy fluxes during summer integrated in the water column, related to the semidiurnal internal tides were 0.12 W/m of the northern site and 0.1 W/m off the southern site. Possible sites of internal wave generation off the south were the Biobío submarine canyon and the slope/shelf break, while off the north the generation site was the slope/shelf break.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...