ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: ZSP-621
    ISSN: 1063-7176
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract A range of diagnostics from two GCM simulations, one of the present-day climate and one of the last glacial maximum (LGM) is used to gain insight into their different temperature structures and eddy dynamics. There are large local increases in baroclinicity at the LGM, especially in the Atlantic storm track, with large accompanying increases in the low level transient eddy heat flux. However, the differences in the zonal mean are much smaller, and the increases in both baroclinicity and heat flux are confined to low levels. Supplementary experiments with baroclinic wave lifecycles confirm the marked contrast between local and zonal mean behaviour, but do not adequately explain the differences between the zonal mean climates. The total flux of energy across latitude circles in the Northern Hemisphere does not change much during DJF, although its transient component is actually reduced at the LGM (during JJA the transient component is increased). Calculations of total linear eddy diffusivity reveal that changes in the time mean stationary waves are chiefly responsible for the seasonal range of this quantity at the LGM, while they only account for half the seasonal range at the present-day.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    facet.materialart.
    PANGAEA
    In:  Supplement to: Waterson, Amy; Edgar, Kirsty M; Schmidt, Daniela N; Valdes, Paul J (2017): Quantifying the stability of planktic foraminiferal physical niches between the Holocene and Last Glacial Maximum. Paleoceanography, https://doi.org/10.1002/2016PA002964
    Publication Date: 2019-04-30
    Description: The application of transfer functions on fossil assemblages to reconstruct past environments is fundamentally based on the assumption of stable environmental niches in both space and time. We quantitatively test this assumption for six dominant planktic foraminiferal species (Globigerinoides ruber (pink), G. ruber (white), Trilobatus sacculifer, Truncorotalia truncatulinoides, Globigerina bulloides and Neogloboquadrina pachyderma) by contrasting reconstructions of species realised and optimum distributions in the modern and during the Last Glacial Maximum (LGM) using an ecological niche model (ENM; MaxEnt) and ordination framework. Global ecological niche models calibrated in the modern ocean have high predictive performance when projected to the LGM for sub-polar and polar species, indicating that the environmental niches of these taxa are largely stable at the global scale across this interval. In contrast, ENM's had much poorer predictive performance for the optimal niche of tropical-dwelling species, T. sacculifer and G. ruber (pink). This finding is supported by independent metrics of niche margin change, suggesting that niche stability in environmental space was greatest for (sub)polar species, with greatest expansion of the niche observed for tropical species. We find that globally calibrated ENMs showed good predictions of species occurrences globally, whereas models calibrated in either the Pacific or Atlantic Oceans only and then projected globally performed less well for T. sacculifer. Our results support the assumption of environmental niche stability over the last ~21,000 years for most of our focal planktic foraminiferal species and thus, the application of transfer function techniques for palaeoenvironmental reconstruction during this interval. However, the lower observed niche stability for (sub)tropical taxa T. sacculifer and G. ruber (pink) suggests that (sub)tropical temperatures could be underestimated in the glacial ocean with the strongest effect in the equatorial Atlantic where both species are found today.
    Type: Dataset
    Format: text/tab-separated-values, 70 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-12-09
    Description: Over the last decade, our understanding of cli- mate sensitivity has improved considerably. The climate system shows variability on many timescales, is subject to non-stationary forcing and it is most likely out of equi- librium with the changes in the radiative forcing. Slow and fast feedbacks complicate the interpretation of geolog- ical records as feedback strengths vary over time. In the geological past, the forcing timescales were different than at present, suggesting that the response may have behaved differently. Do these insights constrain the climate sensitiv- ity relevant for the present day? In this paper, we review the progress made in theoretical understanding of climate sensitivity and on the estimation of climate sensitivity from proxy records. Particular focus lies on the background state dependence of feedback processes and on the impact of tipping points on the climate system. We suggest how to further use palaeo data to advance our understanding of the currently ongoing climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The uplift of the Tibetan plateau, an area that is 2,000 km wide, to an altitude of about 5,000 m has been shown to modify global climate and to influence monsoon intensity. Mechanical and thermal models for homogeneous thickening of the lithosphere make specific predictions about ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 372 (1994), S. 221-221 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] FROM a geological perspective, our pre-sent climate is unusually varied. For much of the distant past, climate appears to have been substantially warmer, particularly at mid- and high latitudes. For instance, during most of the past 250 million years, there have been no polar ice caps. The most ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1365-3121
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: General Circulation Models (GCMs) are currently used to predict future global change. However, the robustness of GCMs can, and should, be evaluated by their ability to simulate past climate regimes. Their success in ‘retrodiction’ can then be assessed by reference to the testimony of the geological record. Geological evidence provides a database which can be used in the estimation of sea surface temperatures and other proxy data useful in palaeoclimatic studies. These data can then be used to refine the prescribed boundary conditions for running GCMs themselves. Results of modelling experiments confirm a generally warmer Mesozoic earth with arid tropics and convective rainfall higher over the oceans than at present. Circum-polar wetlands are also indicated. Modelled cloudiness is also higher in the Mesozoic, contributing to greenhouse conditions and possibly influencing terrestrial biomes and marine ecosystems.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract. A range of diagnostics from two GCM simulations, one of the present-day climate and one of the last glacial maximum (LGM) is used to gain insight into their different temperature structures and eddy dynamics. There are large local increases in baroclinicity at the LGM, especially in the Atlantic storm track, with large accompanying increases in the low level transient eddy heat flux. However, the differences in the zonal mean are much smaller, and the increases in both baroclinicity and heat flux are confined to low levels. Supplementary experiments with baroclinic wave lifecycles confirm the marked contrast between local and zonal mean behaviour, but do not adequately explain the differences between the zonal mean climates. The total flux of energy across latitude circles in the Northern Hemisphere does not change much during DJF, although its transient component is actually reduced at the LGM (during JJA the transient component is increased). Calculations of total linear eddy diffusivity reveal that changes in the time mean stationary waves are chiefly responsible for the seasonal range of this quantity at the LGM, while they only account for half the seasonal range at the present-day.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    facet.materialart.
    Copernicus Publications (EGU)
    In:  Climate of the Past, 10 (2). pp. 607-622.
    Publication Date: 2014-06-02
    Description: Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly saline and highly fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate. The simulations suggest that although the effect remains relatively small, MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid–high northern latitudes by a few degrees, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents seas. With hypersaline MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 1.5–6 Sv. With hyposaline MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the north (mainly −1 to −3 °C, but up to −8 °C) and weaker warming in the south (up to +0.5 to +2.7 °C). These simulations identify key target regions and climate variables for future proxy reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-06
    Description: We present the first neodymium isotope reconstruction of Mediterranean–Atlantic water exchange through the Moroccan (‘Rifian’) Corridor 8–5 Ma. This covers the late Miocene Messinian Salinity Crisis (MSC); a period when progressive tectonic restriction of the Mediterranean–Atlantic seaways resulted in extreme, basin-wide Mediterranean salinity fluctuations. The Rifian Corridor was one of these seaways and until now, relatively poor age constraints existed for the timing of Corridor closure, due to the impact of uplift and erosion on the sedimentary record. The bottom water Nd isotope record from the continuous Bou Regreg Valley succession in northwest Morocco allows us to explore corridor connectivity with the Atlantic. Data from the interior and Mediterranean edge of the Rifian Corridor (respectively, the Taza–Guercif and Melilla basins, northern Morocco) provide new information on corridor shallowing and the provenance of water flowing through the seaway. As a result, we can constrain the age of Rifian Corridor closure to 6.64–6.44 Ma. We also find no evidence of the siphoning of Atlantic waters through the seaway (7.20–6.58 Ma). Our results cannot exclude the possibility that at times during the Messinian Salinity Crisis, Mediterranean Outflow Water reached the Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...