ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archive for rational mechanics and analysis 68 (1978), S. 227-256 
    ISSN: 1432-0673
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract The two cases of stationary Ekman boundary layer flow of an incompressible fluid near i) a plane boundary and ii) a free surface with constant shear are considered. It is proven that a stable secondary flow in the form of traveling waves bifurcates from the stationary flow at a certain Reynolds number, and that the stationary flow is unstable above this number. The values of the critical Reynolds number and of the numbers that characterize the traveling wave are computed and compared with experimental values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 13 (1997), S. 117-129 
    ISSN: 1573-269X
    Keywords: Period-doubling bifurcations ; chaos ; quasiperiodicity ; railway dynamics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract Cooperrider's mathematical model of a railway bogie running on a straight track has been thoroughly investigated due to its interesting nonlinear dynamics (see True [1] for a survey). In this article a detailed numerical investigation is made of the dynamics in a speed range, where many solutions exist, but only a couple of which are stable. One of them is a chaotic attractor. Cooperrider's bogie model is described in Section 2, and in Section 3 we explain the method of numerical investigation. In Section 4 the results are shown. The main result is that the chaotic attractor is created through a period-doubling cascade of the secondary period in an asymptotically stable quasiperiodic oscillation at decreasing speed. Several quasiperiodic windows were found in the chaotic motion. This route to chaos was first described by Franceschini [9], who discovered it in a seven-mode truncation of the plane incompressible Navier–Stokes equations. The problem investigated by Franceschini is a smooth dynamical system in contrast to the dynamics of the Cooperrider truck model. The forcing in the Cooperrider model includes a component, which has the form of a very stiff linear spring with a dead band simulating an elastic impact. The dynamics of the Cooperrider truck is therefore “non-smooth”. The quasiperiodic oscillation is created in a supercritical Neimark bifurcation at higher speeds from an asymmetric unstable periodic oscillation, which gains stability in the bifurcation. The bifurcating quasiperiodic solution is initially unstable, but it gains stability in a saddle-node bifurcation when the branch turns back toward lower speeds. The chaotic attractor disappears abruptly in what is conjectured to be a blue sky catastrophe, when the speed decreases further.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-16
    Print ISSN: 0939-1533
    Electronic ISSN: 1432-0681
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-01
    Print ISSN: 0022-460X
    Electronic ISSN: 1095-8568
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...