ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 288: 25-38.
    Publication Date: 2008-02-19
    Description: In order to estimate the influence of global climate change upon the hydrological regime, variations in the water budget prompted by precipitation and temperature changes were evaluated in the region of Campania (southern Italy). In many parts of the region, precipitation distribution in the last 20 years shows a marked reduction. During the same period, Campania also experienced a regional temperature increase of about 0.3{degrees}C. Water budgets, calculated in a geographical information system environment for the region's hydrogeological structures, show a mean decrease of 30% of average infiltration within the present climate scenario. The structures most affected are carbonate aquifers, with the flow of springs being significantly reduced (about 70 m3/s). The most severely affected zones are the mountainous areas in the southern and northern parts of Campania.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-09-30
    Description: The study of hydrological variations in the watersheds of seismic areas can be useful in order to acquire a new knowledge of the mechanisms by which earthquakes can produce hydrological anomalies. Italy has the availability of many long historical series both of hydrological parameters and of seismological data, and is an ideal laboratory to verify the validity of theoretical models proposed by various authors. In this work we analyse the hydrological anomalies associated with some of the big earthquakes that occurred in the last century in the southern Apennines: 1930, 1980 and 1984. For these earthquakes we analysed hydrometric and pluviometric data looking for significant anomalies in springs, water wells and mountain streams. The influence of rainfalls on the normal flows of rivers, springs and wells has been ascertained. Also, the earthquake of 1805, for which a lot of hydrological perturbations have been reported, is considered in order to point out effects imputable to this earthquake that can be similar to the effects of the other big earthquakes. The considered seismic events exhibit different modes of energy release, different focal mechanisms and different propagation of effects on the invested areas. Furthermore, even if their epicentres were not localised in contiguous seismogenetic areas, it seems that the hydrological effects imputable to them took place in the same areas. Such phenomena have been compared with macroseismic fields and transformed in parameters, in order to derive empirical relationships between the dimensions of the event and the characteristics of the hydrological variations. The results of this work point to a close dependence among hydrological anomalies, regional structures and fault mechanisms, and indicate that many clear anomalies have been forerunners of earthquakes. In 1993, the Naples Bureau of the Hydrographic National Service started the continuous monitoring of hydrologic parameters by a network of automatic stations and transmission in real time; presently 7 acquifers are under control in which also pH, T , salinity, electrical conductivity, dissolved oxygen are measured. We envisage to increase the number of monitoring sites and controlled parameters.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-12
    Description: In this paper we use a multi-hazard approach to analyse the 9 September 2010 flash-flood occurred in the Dragone basin, a 9 km2 catchment located along the Amalfi rocky coastal range, Southern Italy. In this area, alluvial-fan-flooding is the most frequent and destructive geologic hazards since Roman time. Sudden torrent of waters (flash flood) are caused by high-intensity and very localized cloudbursts of short duration inducing slope erosion and sediment delivery from slope-to-stream. The elevated bed load transport produces fast-moving hyperconcentrated flows with significant catastrophic implications for communities living at stream mouth. The 9 September 2010 rainstorm event lasted 1 h with an intensity rainfall peak nearly to 120 mm h−1. High topographic relief of the Amalfi coastal range and positive anomalies of the coastal waters conditioned the character of the convective system. Based on geological data and post-event field evidence and surveys, as well as homemade-videos, and eyewitness accounts the consequent flash-flood mobilized some 25 000 m3 of materials with a total (water and sediment) peak flow of 80 m3 s−1. The estimated peak discharge of only clear water was about 65 m3 s−1. This leads to a sediment bulking factor of 1.2 that corresponds to a flow with velocities similar to those of water during a flood.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-04-03
    Description: The 23 July 1930 earthquake (MS=6.7) in the Southern Apennines (Italy) was a catastrophic event that produced many effects such as surface faulting, fractures, landslides, settlements, hydrological changes, variations in chemical/physical activity related to the volcanic and/or thermal zones and also acoustic and optical phenomena. It is the first great earthquake of the twentieth century that was studied, thanks to the hydrological monitoring network of the Italian Hydrographic Survey (IHS) set up from 1925 to 1929. For this earthquake we analysed the initial IHS hydrometric and pluviometric data, looking for significant anomalies in springs, water wells and mountain streams. Hydrological data relative to rivers, springs and water wells indicate that some changes can be correlated with the earthquake: a post-seismic excess discharge in some streams, pre- and co-seismic decreases in stream flows and water levels in wells, pre- and post-seismic increases in discharges. The pre- and co-seismic stresses and the tectonic deformations were studied in order to find a possible model of interaction between stress state and hydrological variations. The anomalies found in this work can be considered "rebound anomalies", which are the most common precursor reported by many authors and related to increases in porosity and permeability caused by the fracturing that precedes an earthquake. An estimation of the total excess discharge (0.035 km3) caused by the MS=6.7 Irpinia earthquake is consistent with the excess discharge of about 0.01 km3 determined for the Mw=6.9 Loma Prieta earthquake.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-04
    Description: In this paper we use a multi-hazard approach to analyse the 9 September 2010 flash flood in the Dragone basin, a 9 km2 catchment located along the Amalfi rocky coastal range, southern Italy. In this area, alluvial fan flooding has been the most frequent and destructive geologic hazard since Roman times. Sudden torrents of water (flash floods) are caused by high-intensity and very localized cloudbursts of short duration, inducing slope erosion and sediment delivery from slope to stream. The elevated bed load transport produces fast-moving hyperconcentrated flows with significant catastrophic implications for communities living at the stream mouth. The 9 September 2010 rainstorm event lasted 1 h with an intensity rainfall peak of nearly 120 mm h−1. High topographic relief of the Amalfi coastal range and positive anomalies of the coastal waters conditioned the character of the convective system. Based on geological data and post-event field evidence and surveys, as well as homemade videos and eyewitness accounts, it is reported that the flash flood mobilized some 25 000 m3 of materials with a total (water and sediment) peak flow of 80 m3 s−1. The estimated peak discharge of only clear water was about 65 m3 s−1. This leads to a sediment bulking factor of 1.2 that corresponds to a flow with velocities similar to those of water during a flood.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-01-01
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2000-04-19
    Print ISSN: 0177-798X
    Electronic ISSN: 1434-4483
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1434-4483
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Summary The locations of measuring stations are often inhomogeneously distributed in space, possibly because of both geophysical interests and access problems. The areal inhomogeneity of a network can be well characterised by its fractal dimension, that is an index ranging progressively from 0 (when all stations are distributed on a single point or on isolated points) to 2 (when all stations are uniformly distributed). Appreciating the scaling region, inside which the station-co-ordinates are fractally distributed, provides valuable information both on the minimum detectable scale and on the minimum resolvable dimension. The increase in the measuring capability of a network must occur through its strategic enlargement resulting in a compromise between the fractal dimension increase and local topographic necessities. An application to a rain-gauge network belonging to the Naples Section of the Italian Hydrographic Service is reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-03
    Description: Seismically induced environmental effects (in particular, surfacefaults, ground cracks, slope failures, liquefaction, soil compaction, hydrological changes, tsunamis) are assumed to provide fundamentalinformation on the earthquake size and its intensity field, crucial for a more efficient seismic hazard assessment. Accordingly, this study is aimed at substantiating this assumption by showing that the knowledge about ground effects acquired in recent earthquakes, when combined with that illustrated in historical documents, allows to buildan improved picture of historic seismic events, with respect to that usually provided by the solely damage-based macroseismic scales. In this perspective, the environmental effects are analysed and cataloguedof three of the most ruinous earthquakes in Southern Italy of the last two centuries: the July 26,1805, Molise event (XI MCS, M 6.8), the July 23, 1930, Irpinia event (X MCS, M 6.7), and the November 23, 1980 Campania-Basilicata event (X MSK, Ms 6.9). The distribution of the earthquake environmental effects, in particular their distance from the known or supposed causative fault, has been investigated to obtain a more detailed and comprehensive picture of the macroseismic field, a key parameter in seismic hazard assessment and seismic zonation. KEY WORDS: historical seismicity, intensity, ground effects, earthquake
    Description: Published
    Description: 333-346
    Description: 3.10. Sismologia storica e archeosismologia
    Description: JCR Journal
    Description: open
    Keywords: ground effects, earthquakes, . ; Southern Apennines ; historical seismicity, ; intensity, ; 1980 earthquake ; 1805,1930 earthquakes ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...