ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2012-08-25
    Description: SUMMARY Boundary layer theory is used to derive scaling relationships for plate stresses in a mantle convection system with a low-viscosity asthenosphere. The theory assumes a plate tectonic like mode of mantle convection with flow driven by an active upper boundary layer. The theory predicts that the confinement of horizontal mantle flow within a low-viscosity, sublithospheric channel can lead to an increase in plate stress compared to the case lacking a channel (even if the absolute viscosity of the sublithosphere mantle does not change between the two cases). The theory further predicts increasing shear stress with decreasing low-viscosity channel thickness. If the thickness of tectonic plates is determined dominantly by a dehydrated chemical lithosphere, then the plate normal stress is predicted to also increase with decreasing channel thickness. We use 3-D spherical shell simulations of mantle convection with temperature-, depth- and stress dependent rheology to test scaling trends. The simulations and theoretical scalings demonstrate that a low-viscosity layer (asthenosphere) can amplify convective stresses. If the level of convective stress plays a role in maintaining and/or reactivating plate boundaries, this suggests that a relatively thin low viscosity layer may help to maintain plate tectonics. The numerical simulations support this suggestion as they show that an increase in the thickness of a low viscosity channel can cause the system to transition from an active-lid mode of convection to a stagnant lid state. Collectively, the simulations and theoretical scalings lead to the conclusion that the role of the asthenosphere in maintaining plate tectonics does not come principally from a basal lubrication effect, associated with a low absolute asthenosphere viscosity, but, instead, from a mantle flow channelization effect, associated with a high viscosity contrast from the asthenosphere to the mantle below.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-27
    Description: Tectonic plate motions reflect dynamical contributions from subduction processes (i.e., classical “slab-pull” forces) and lateral pressure gradients within the asthenosphere (“asthenosphere-drive” forces), which are distinct from gravity forces exerted by elevated mid-ocean ridges (i.e., classical “ridge-push” forces). Here we use scaling analysis to show that the extent to which asthenosphere-drive contributes to plate motions depends on the lateral dimension of plates and on the relative viscosities and thicknesses of the lithosphere and asthenosphere. Whereas slab-pull forces always govern the motions of plates with a lateral extent greater than the mantle depth, asthenosphere-drive forces can be relatively more important for smaller (shorter wavelength) plates, large relative asthenosphere viscosities or large asthenosphere thicknesses. Published plate velocities, tomographic images and age-binned mean shear wave velocity anomaly data allow us to estimate the relative contributions of slab-pull and asthenosphere-drive forces for the motions of the Atlantic and Pacific plates. Whereas the Pacific plate is driven largely by slab pull, the Atlantic plate is predicted to be strongly driven by basal forces related to viscous coupling to strong asthenospheric flow, consistent with recent observations related to the stress state of North America. In addition, compared to the East Pacific Rise (EPR), the relatively large lateral pressure gradient near the Mid-Atlantic Ridge (MAR) is expected to produce significantly steeper dynamic topography. Thus, the relative importance of this plate-driving force may partly explain why the flanking topography at the EPR is smoother than at the MAR. Our analysis also indicates that this plate-driving force was more significant, and heat loss less efficient, in Earth's hotter past compared with its cooler present state. This type of trend is consistent with thermal history modeling results which require less efficient heat transfer in Earth's past.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...