ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-08
    Description: The Piton de la Fournaise basaltic volcano, on La Réunion Island in the western Indian Ocean, is one of the most active volcanoes in the world. This volcano is classically considered as the surface expression of an upwelling mantle plume and its activity is continuously monitored, providing detailed information on its superficial dynamics and on the edifice structure. Deeper crustal and upper mantle structure under La Réunion Island is surprisingly poorly constrained, motivating this study. We used receiver function techniques to determine a shear wave velocity profile through the crust and uppermost mantle beneath La Réunion, but also at other seismic stations located on the hotspot track, to investigate the plume and lithosphere interaction and its evolution through time. Receiver functions (RFs) were computed at permanent broad-band seismic stations from the GEOSCOPE network (on La Réunion and Rodrigues), at IRIS stations MRIV and DGAR installed on Mauritius and Diego Garcia islands, and at the GEOFON stations KAAM and HMDM on the Maldives. We performed non-linear inversions of RFs through modelling of P -to- S conversions at various crustal and upper mantle interfaces. Joint inversion of RF and surface wave dispersion data suggests a much deeper Mohorovičić discontinuity (Moho) beneath Mauritius (~21 km) compared to La Réunion (~12 km). A magmatic underplated body may be present under La Réunion as a thin layer (≤3 km thick), as suggested by a previous seismic refraction study, and as a much thicker layer beneath other stations located on the hotspot track, suggesting that underplating is an important process resulting from the plume–lithosphere interaction. We find evidence for a strikingly low velocity layer starting at about 33 km depth beneath La Réunion that we interpret as a zone of partial melt beneath the active volcano. We finally observe low velocities below 70 km beneath La Réunion and below 50 km beneath Mauritius that could represent the base of the oceanic lithosphere.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-15
    Description: Ultra-low velocity zones (ULVZs) are small-scale structures in the Earth's lowermost mantle inferred from the analysis of seismological observations. These structures exhibit a strong decrease in compressional ( P )-wave velocity, shear ( S )-wave velocity, and an increase in density. Quantifying the elastic properties of ULVZs is crucial for understanding their physical origin, which has been hypothesized either as partial melting, iron enrichment, or a combination of the two. Possible disambiguation of these hypotheses can lead to a better understanding of the dynamic processes of the lowermost mantle, such as, percolation, stirring and thermochemical convection. To date, ULVZs have been predominantly studied by forward waveform modelling of seismic waves that sample the core–mantle boundary region. However, ULVZ parameters (i.e. velocity, density, and vertical and lateral extent) obtained through forward modelling are poorly constrained because inferring Earth structure from seismic observations is a non-linear inverse problem with inherent non-uniqueness. To address these issues, we developed a trans-dimensional hierarchical Bayesian inversion that enables rigorous estimation of ULVZ parameter values and their uncertainties, including the effects of model selection. The model selection includes treating the number of layers and the vertical extent of the ULVZ as unknowns. The posterior probability density (solution to the inverse problem) of the ULVZ parameters is estimated by reversible jump Markov chain Monte Carlo sampling that employs parallel tempering to improve efficiency/convergence. First, we apply our method to study the resolution of complex ULVZ structure (including gradually varying structure) by probabilistically inverting simulated noisy waveforms. Then, two data sets sampling the CMB beneath the Philippine and Tasman Seas are considered in the inversion. Our results indicate that both ULVZs are more complex than previously suggested. For the Philippine Sea data, we find a strong decrease in S -wave velocity, which indicates the presence of iron-rich material, albeit this result is accompanied with larger parameter uncertainties than in a previous study. For the Tasman Sea data, our analysis yields a well-constrained S -wave velocity that gradually decreases with depth. We conclude that this ULVZ represents a partial melt of iron-enriched material with higher melt content near its bottom.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-03
    Description: The problem of decomposing irregular data on the sphere into a set of spherical harmonics is common in many fields of geosciences where it is necessary to build a quantitative understanding of a globally varying field. For example, in global seismology, a compressional or shear wave speed that emerges from tomographic images is used to interpret current state and composition of the mantle, and in geomagnetism, secular variation of magnetic field intensity measured at the surface is studied to better understand the changes in the Earth's core. Optimization methods are widely used for spherical harmonic analysis of irregular data, but they typically do not treat the dependence of the uncertainty estimates on the imposed regularization. This can cause significant difficulties in interpretation, especially when the best-fit model requires more variables as a result of underestimating data noise. Here, with the above limitations in mind, the problem of spherical harmonic expansion of irregular data is treated within the hierarchical Bayesian framework. The hierarchical approach significantly simplifies the problem by removing the need for regularization terms and user-supplied noise estimates. The use of the corrected Akaike Information Criterion for picking the optimal maximum degree of spherical harmonic expansion and the resulting spherical harmonic analyses are first illustrated on a noisy synthetic data set. Subsequently, the method is applied to two global data sets sensitive to the Earth's inner core and lowermost mantle, consisting of PKPab-df and PcP-P differential traveltime residuals relative to a spherically symmetric Earth model. The posterior probability distributions for each spherical harmonic coefficient are calculated via Markov Chain Monte Carlo sampling; the uncertainty obtained for the coefficients thus reflects the noise present in the real data and the imperfections in the spherical harmonic expansion.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉We apply virtual deep seismic sounding (VDSS) to data collected from both permanent and temporary seismic stations in Australia with the goal of examining (i) the resilience of the method to the presence of complex lithospheric structure, and (ii) the effectiveness of different approaches for estimating bulk crustal properties (namely thickness and Vp). Data from the permanent WRAB in the Northern Territory station is ideal for benchmarking VDSS (large number and favourable distribution of recorded earthquakes), with the results from several approaches agreeing on a thickness of 40-42 km. Application of VDSS to data from the temporary BILBY array, a linear distribution of broadband stations that traverses central Australia, shows that strong Moho reflections can be retrieved with as few as two earthquakes even at the transition between crustal blocks of different character and in the presence of thick sedimentary basins. Crustal thickness varies between 36-54 km and compare well with the reflectivity character of nearby deep seismic reflection lines. Furthermore, we find that off-line estimates of crustal thickness, calculated by binning the source regions according to back-azimuth, produce estimates of crustal thickness that are consistent with the regional geology. Overall, we find that VDSS is a powerful technique for estimating crustal thickness and velocity due to its insensitivity to complex short-wavelength structure and requirement of a small number earthquakes to produce a stable result. However, not all schemes tested for extracting bulk crustal properties appear to be robust and stringent data quality checking is still required during implementation.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈span〉〈div〉SMARY〈/div〉We apply virtual deep seismic sounding (VDSS) to data collected from both permanent and temporary seismic stations in Australia with the goal of examining (i) the resilience of the method to the presence of complex lithospheric structure and (ii) the effectiveness of different approaches for estimating bulk crustal properties (namely thickness and 〈span〉Vp〈/span〉). Data from the permanent station WRAB in the Northern Territory is ideal for benchmarking VDSS (large number and favourable distribution of recorded earthquakes), with the results from several approaches agreeing on a thickness of 40–42 km. Application of VDSS to data from the temporary BILBY array, a linear distribution of broadband stations that traverses central Australia, shows that strong Moho reflections can be retrieved with as few as two earthquakes even at the transition between crustal blocks of different character and in the presence of thick sedimentary basins. Crustal thickness varies between 36 and 54 km and compares well with the reflectivity character of nearby deep seismic reflection lines. Furthermore, we find that off-line estimates of crustal thickness, calculated by binning the source regions according to back-azimuth, produce values of crustal thickness that are consistent with the regional geology. Overall, we find that VDSS is a powerful technique for estimating crustal thickness and velocity due to its insensitivity to complex short-wavelength structure and requirement of a small number earthquakes to produce a stable result. However, not all schemes tested for extracting bulk crustal properties appear to be robust and stringent data quality checking is still required during implementation.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: 〈span〉〈div〉SUMMARY〈/div〉This paper reviews the concepts underlying the well-documented receiver functions (RFs) method, and places it in the conceptual framework of seismic interferometry. We first propose a simple and efficient approach for isolating the receiver-side seismic response (i.e. the record of reflections and conversions in the stratification beneath receivers): this method makes use of the 〈span〉P〈/span〉-wave coda recorded on the radial and vertical components of three-component stations, applies spectral whitening, which is followed by auto- and cross-correlation. The interferometric principle underpinning RFs analysis is shown theoretically and illustrated in practice using earthquake records and synthetic waveforms computed from simple structures. We point out to a major limitation, which is the contamination of the receiver-side response by propagation effects in the source-side structure. We then apply our approach to teleseismic earthquake data recorded in California. We show that the reconstructed vertical and horizontal seismic responses can be back-projected to illuminate the crustal and mantle structure. We build comparable ∼300-km-long seismic reflectivity profiles from pure 〈span〉P〈/span〉-wave reverberations and from the converted wavefield across the forearc and arc of the southern Cascadia subduction zone. Then, we show a case of processing data from narrow bandpass, short-period and single-component sensors, usually unsuitable for RFs analysis. Finally, through the same interferometric principle, we attempt to demonstrate a link between event- and noise-based seismic interferometry. We demonstrate that it is possible to extract approximate responses from the records of low-magnitude—down to 4.5—teleseismic earthquakes. We make a comparison of these estimates with the result from the autocorrelation of the continuous ambient noise seismic wavefield. While the amplitudes of the extracted receiver-side responses are mutually different, their phases are in a relative agreement. This development opens a way to the use of small magnitude teleseismic earthquakes to characterize the receiver-side structure.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: 〈span〉〈div〉Summary〈/div〉This paper reviews the concepts underlying the well documented receiver functions method, and places it in the conceptual framework of seismic interferometry. We first propose a simple and efficient approach for isolating the receiver-side seismic response (i.e. the record of reflections and conversions in the stratification beneath receivers): this method makes use of the P-wave coda recorded on the radial and vertical components of three-component stations, applies spectral whitening, which is followed by auto- and cross-correlation. The interferometric principle underpinning receiver functions analysis is shown theoretically and illustrated in practice using earthquake records and synthetic waveforms computed from simple structures. We point out to a major limitation, which is the contamination of the receiver-side response by propagation effects in the source-side structure. We then apply our approach to teleseismic earthquake data recorded in California. We show that the reconstructed vertical and horizontal seismic responses can be back-projected to illuminate the crustal and mantle structure. We build comparable ∼300 km-long seismic reflectivity profiles from pure P-wave reverberations and from the converted wavefield across the forearc and arc of the southern Cascadia subduction zone. Then, we show a case of processing data from narrow band-pass, short-period, and single-component sensors, usually unsuitable for receiver functions analysis. Finally through the same interferometric principle, we attempt to demonstrate a link between event- and noise-based seismic interferometry. We demonstrate that it is possible to extract approximate responses from the records of low-magnitude — down to 4.5 — teleseismic earthquakes. We make a comparison of these estimates with the result from the auto-correlation of the continuous ambient noise seismic wavefield. While the amplitudes of the extracted receiver-side responses are mutually different, their phases are in a relative agreement. This development opens a way to the use of small magnitude teleseismic earthquakes to characterize the receiver-side structure.〈/span〉
    Print ISSN: 2051-1965
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018
    Description: 〈p〉Seismic 〈i〉J〈/i〉 waves, shear waves that traverse Earth’s inner core, provide direct constraints on the inner core’s solidity and shear properties. However, these waves have been elusive in the direct seismic wavefield because of their small amplitudes. We devised a new method to detect 〈i〉J〈/i〉 waves in the earthquake coda correlation wavefield. They manifest through the similarity with other compressional core-sensitive signals. The inner core is solid, but relatively soft, with shear-wave speeds and shear moduli of 3.42 ± 0.02 kilometers per second and 149.0 ± 1.6 gigapascals (GPa) near the inner core boundary and 3.58 ± 0.02 kilometers per second and 167.4 ± 1.6 GPa in Earth’s center. The values are 2.5% lower than the widely used Preliminary Earth Reference Model. This provides new constraints on the dynamical interpretation of Earth’s inner core.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In: Science
    Publication Date: 2018-10-19
    Description: Seismic J waves, shear waves that traverse Earth’s inner core, provide direct constraints on the inner core’s solidity and shear properties. However, these waves have been elusive in the direct seismic wavefield because of their small amplitudes. We devised a new method to detect J waves in the earthquake coda correlation wavefield. They manifest through the similarity with other compressional core-sensitive signals. The inner core is solid, but relatively soft, with shear-wave speeds and shear moduli of 3.42 ± 0.02 kilometers per second and 149.0 ± 1.6 gigapascals (GPa) near the inner core boundary and 3.58 ± 0.02 kilometers per second and 167.4 ± 1.6 GPa in Earth’s center. The values are 2.5% lower than the widely used Preliminary Earth Reference Model. This provides new constraints on the dynamical interpretation of Earth’s inner core.
    Keywords: Geochemistry, Geophysics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Geosciences , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-07-23
    Description: The transition zone of the Earth’s mantle (the depth interval between two major seismic discontinuities at 410 km and 660 km) is critical to understanding our planet’s evolution. Some diamonds are thought to have originated in the transition zone and the inclusions found in them are the only samples of material directly extracted from this depth range. By comparing natural majorite garnet inclusions in diamonds with the compositions of experimentally crystallized majorite garnets, we determine two major compositional trends, the pure metabasitic (or eclogitic) trend and the combined metaperidotitic and metapyroxenitic trend, that are strongly correlated with their preferred substitution mechanisms during majorite formation. Based on these trends, we demonstrate that the majority of the reported majorite inclusions in natural diamonds formed neither in a pure metabasite nor in a metaperidotite lithology, but in fact crystallized from a wide range of compositions intermediate between conventional basaltic and peridotitic, referred to here as metapyroxenitic. Given the dominance of metapyroxenite-type majorite diamond inclusions and their inferred syngenetic origin, we argue that a significant fraction of metapyroxenite rock is present within Earth’s transition zone and is important in the diamond-forming process. This is in agreement with recent self-consistent seismological and/or mineral physics studies that support models of a lithologically heterogeneous transition zone. From trace element and carbon isotope features, we infer a crustal origin for these rocks.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...