ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-06-04
    Description: Calculating subsurface pressures and predicting overpressured zones, in particular for safe drilling operations, is an integrated approach based on data and assumptions from various sources. Uncertainties arise from the input data and assumptions, but also from the pore-pressure modeling workflow including shale discrimination and the definition of a normal compaction trend line. These stages are usually performed manually by an expert and are prone to subjective, human interpretation. The quantification of pore-pressure uncertainty associated with the manual modeling stages is, therefore, challenging. Algorithms were developed to account for and quantify the resulting uncertainty and enable automated user support of at least parts of the workflow, thus introducing more objectivity into the modeling steps. The first algorithm performs a statistical analysis on gamma ray logs to discriminate between shale and nonshale formations. The second algorithm calculates a series of normal compaction trend lines from porosity-indicating logs from which average pore-pressure models and uncertainty envelopes can be determined. Furthermore, the behavior of trend-line envelopes from the series of trend lines was quantified by a parameter $$Q$$ , which turned out to become constant in the overpressure region. The algorithms were applied to 23 data sets from different regions worldwide. Pore-pressure uncertainty was identified to be in the range of up to 8% for shale discrimination and less than 20% for normal compaction trend-line setting. In addition, pore-pressure uncertainty in the overpressure zone correlated with the $$Q$$ -factor, which can be used to estimate pore-pressure uncertainty at greater depth from while-drilling measurements in the normal compaction zone. The results also exemplify regional uncertainty variations, which imply that modeling parameters need to be adjusted for specific regions. Moreover, the examples demonstrate that automated algorithms are beneficial methods to add objectivity and reproducibility to the modeling procedure.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1931-05-01
    Description: In 1928 Dr. P. Tesch published a note on the occurrence of an igneous rock in Dutch Coal-measures (1).1 As this is the first occurrence of an igneous rock in Holland, the present authors have decided to publish a more detailed petrographical description of the rock, together with an attempt to correlate it with similar rocks in Great Britain and Germany.
    Print ISSN: 0016-7568
    Electronic ISSN: 1469-5081
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1923-10-01
    Print ISSN: 0016-7428
    Electronic ISSN: 1931-0846
    Topics: Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Force output and fatigue and recovery patterns were studied during intermittent short-term exercise. 27 men performed three bouts of 30 maximal unilateral knee extensions on 2 different occasions. Blood flow was maintained or occluded during recovery periods (60 s). Blood flow was restricted by inflating a pneumatic cuff placed around the proximal thigh. Muscle biopsies from vastus lateralis were analyzed for identification of fast twitch (FT) and slow twitch (ST) fibers and relative FT area. Peak torque decreased during each bout of exercise and more when blood flow was restricted during recovery. Initial peak torque (IPT) and average peak torque (APT) decreased over the three exercise bouts. This response was 3 fold greater without than with blood flow during recovery. IPT and APT decreased more in individuals with mainly FT fibers than in those with mainly ST fibers. It is suggested that performance during repeated bouts of maximal concentric contractions differs between individuals with different fiber type composition. Specifically, in high intensity, intermittent exercise with emphasis on anaerobic energy release a high FT composition may not necessarily be advantageous for performance.
    Keywords: Life Sciences (General)
    Type: European journal of applied physiology and occupational physiology (ISSN 0301-5548); Volume 58; 1-2; 81-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.
    Keywords: Aerospace Medicine
    Type: Archives of physical medicine and rehabilitation (ISSN 0003-9993); Volume 77; 8; 773-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: The response of skeletal muscle to unweighting was studied in six healthy males who were subjected to four weeks of lowerlimb suspension. They performed three bouts of 30 consecutive maximal concentric knee extensions, before unloading and the day after (POST 1), 4 days after (POST 2) and 7 weeks after (REC) resumed weight-bearing. Peak torque of each contraction was recorded and work was calculated as the mean of the average peak torque for the three bouts and fatigability was measured as the decline in average peak torque over bouts. Needle biopsies were obtained from m. vastus lateralis of each limb before and at POST 1. Muscle fibre type composition and area, capillarity and the enzyme activities of citrate synthase (CS) and phosphofructokinase (PFK) were subsequently analysed. Mean average peak torque for the three bouts at POST1, POST2 and REC was reduced (P 〈 0.05) by 17, 13 and 7%, respectively. Fatigability was greater (P 〈 0.05) at POST2 than before unloading. Type I, IIA and IIB percentage, Type I and II area and capillaries per fibre of Type I and II did not change (P 〉 0.05) in response to unloading. The activity of CS, but not PFK, decreased (P 〈 0.05) after unloading. The weight-bearing limb showed no changes in the variables measured. The results of this study suggest that this human lowerlimb suspension model produces substantial impairments of work and oxidative capacity of skeletal muscle. The performance decrements are most likely induced by lack of weight-bearing.
    Keywords: Aerospace Medicine
    Type: Clinical physiology (Oxford, England) (ISSN 0144-5979); Volume 13; 4; 337-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.
    Keywords: AEROSPACE MEDICINE
    Type: Aerospace Medical Association, Aerospace Medical Association 63rd Annual Scientific Meeting Program; 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: To find means of alleviating muscle atrophy induced by long-term microgravity, the effects of a 19-week-long heavy-resistance training regime (using either concentric muscle actions only or concentric and eccentric muscle actions) on the strengths of the exercised knee extensor muscle group were investigated in two groups of male human subjects performing two types of training exercises: supine leg press or/and seated knee extension. Results show that a training program in which both the concentric and the eccentric muscle action was performed led to substantially greater increases in maximal muscle strength than when only concentric exercises were performed.
    Keywords: AEROSPACE MEDICINE
    Type: Physiologist, Supplement (ISSN 0031-9376); 33; S-77 to
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-15
    Description: Lack of weight-bearing, as occurs in space, appears to be associated with reductions in strength and mass of skeletal muscle. Very limited data, however, is at hand describing changes in skeletal muscle size and function following manned space missions. Our current knowledge therefore is mainly based on studies of space flown rats. It is obvious though that this information, only in part can be extrapolated to humans. A few bed rest studies have demonstrated that decreases in strength and muscle size are substantial. At this time, however, the magnitude or time course of such changes either in response to space flight or simulations of microgravity have not been defined. In the last few years we have employed a human model to simulate unloading of lower limb skeletal muscles that occurs in microgravity. This model was essentially adopted from the rat hindlimb suspension technique. The purpose of this study was to assess the magnitude of decreases in muscle strength and size as a result of five weeks of unilateral lower limb suspension.
    Keywords: Aerospace Medicine
    Type: Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology (ISSN 1077-9248); 1; 1; P59-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research
    In:  EPIC3Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 1(2), pp. 7, ISSN: 0032-2490
    Publication Date: 2019-07-17
    Repository Name: EPIC Alfred Wegener Institut
    Type: "Polarforschung" , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...