ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fresenius' journal of analytical chemistry 363 (1999), S. 673-679 
    ISSN: 1432-1130
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Headspace solid-phase microextraction (SPME) has been developed for the analysis of common organophosphorus pesticides in soil. Factors such as adsorption-time, sampling temperature and matrix modification by addition of water were carefully considered to optimize the extraction efficiency. This technique could achieve limits of detection of 143 ng/g for Malathion and Parathion, and 28.6 ng/g for Phorate, Diazinon and Disulfoton in humic soil when the extracted sample was analyzed by gas chromatography-flame ionization detector (GC-FID). Lower limits of detection of 28.6 ng/g for Malathion and Parathion, and 14.3 ng/g for Phorate, Diazinon and Disulfoton can be achieved by analyzing the extracted sample with gas chromatography/mass spectrometric detector (GC/MS). As the extraction efficiency was generally better when analyzing sandy soil, the limits of detection are envisaged to be even better for such a matrix. The technique was found to be reliable with good precision of about 6.5% RSD for the sandy soil and about 15% for the humic material. The poorer precision of extraction from the humic material is probably related to the poorer homogeneity of this material. The linearity of extraction was good with linear calibration in the range of 0.143 to 28.6 μg/g. Finally, headspace SPME was compared to aqueous extraction of soil followed by SPME (LE-SPME). The recoveries obtained by headspace SPME were comparable to those from liquid-liquid extraction of soil followed by SPME. However, the analysis of headspace SPME has less background interference. Perhaps, the greatest advantage of this technique is its non-destructive nature so that it is possible to perform further laboratory analysis of the samples after headspace SPME has been carried out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1999-04-09
    Print ISSN: 0937-0633
    Electronic ISSN: 1432-1130
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...