ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-12-21
    Description: Collaboration between multiple Unmanned Aerial Vehicles (UAVs) to establish a Flying Ad-hoc Network (FANET) is a growing trend since future applications claim for more autonomous and rapidly deployable systems. In this context, Software-Defined Networking FANET (SDN-FANET ) separates the control and data plane and provides network programmability, which considers a centralized controller to perform all FANET control functions based on global UAV context information, such as UAV positions, movement trajectories, residual energy, and others. However, control message dissemination in an SDN-FANET with low overhead and high performance is not a trivial task due to FANET particular characteristics, i.e., high mobility, failures in UAV to UAV communication, and short communication range. With this in mind, it is essential to predict UAV information for control message dissemination as well as consider hierarchical network architecture, reducing bandwidth consumption and signaling overhead. In this article, we present a Cluster-bAsed control Plane messages management in sOftware-defined flying ad-hoc NEtwork, called CAPONE. Based on UAV contextual information, the controller can predict UAV information without control message transmission. In addition, CAPONE divides the FANET into groups by computing the number of clusters using the Gap statistics method, which is input for a Fuzzy C-means method to determine the group leader and members. In this way, CAPONE reduces the bandwidth consumption and signaling overhead, while guaranteeing the control message delivering in FANET scenarios. Extensive simulations are used to show the gains of the CAPONE in terms of Packet Delivery Ratio, overhead, and energy compared to existing SDN-FANET architectures.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-27
    Description: Collaboration between multiple Unmanned Aerial Vehicles (UAVs) to set up a Flying Ad Hoc Network (FANET) is a growing trend since future applications claim for more autonomous and rapid deployable systems. The user experience on watching videos transmitted over FANETs should always be satisfactory even under influence of topology changes caused by the energy consumption of UAVs. In addition, the FANET must keep the UAVs cooperating as much as possible during a mission. However, one of the main challenges in FANET is how to mitigate the impact of limited energy resources of UAVs on the FANET operation in order to monitor the environment for a long period of time. In this sense, UAV replacement is required in order to avoid the premature death of nodes, network disconnections, route failures, void areas, and low-quality video transmissions. In addition, decision-making must take into account energy consumption associated with UAV movements, since they are generally quite energy-intensive. This article proposes a cooperative UAV scheme for enhancing video transmission and global energy efficiency called VOEI. The main goal of VOEI is to maintain the video with QoE support while supporting the nodes with a good connectivity quality level and flying for a long period of time. Based on an Software Defined Network (SDN) paradigm, the VOEI assumes the existence of a centrailized controller node to compute reliable and energy-efficiency routes, as well as detects the appropriate moment for UAV replacement by considering global FANET context information to provide energy-efficiency operations. Based on simulation results, we conclude that VOEI can effectively mitigate the energy challenges of FANET, since it provides energy-efficiency operations, avoiding network death, route failure, and void area, as well as network partitioning compared to state-of-the-art algorithm. In addition, VOEI delivers videos with suitable Quality of Experience (QoE) to end-users at any time, which is not achieved by the state-of-the-art algorithm.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...