ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-01-12
    Type: Dataset
    Format: text/tab-separated-values, 217 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-12
    Type: Dataset
    Format: text/tab-separated-values, 51 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-09-27
    Description: Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and 〉500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
    Type: Dataset
    Format: application/zip, 2267.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-17
    Type: Dataset
    Format: text/tab-separated-values, 336 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-22
    Description: The ocean's biological carbon pump plays a central role in regulating atmospheric CO2 levels. In particular, the depth at which sinking organic carbon is broken down and respired in the mesopelagic zone is critical, with deeper remineralization resulting in greater carbon storage. Until recently, however, a balanced budget of the supply and consumption of organic carbon in the mesopelagic had not been constructed in any region of the ocean, and the processes controlling organic carbon turnover are still poorly understood. Large-scale data syntheses suggest that a wide range of factors can influence remineralization depth including upper-ocean ecological interactions, and interior dissolved oxygen concentration and temperature. However, these analyses do not provide a mechanistic understanding of remineralization, which increases the challenge of appropriately modeling the mesopelagic carbon dynamics. In light of this, the UK Natural Environment Research Council has funded a programme with this mechanistic understanding as its aim, drawing targeted fieldwork right through to implementation of a new parameterization for mesopelagic remineralization within an IPCC class global biogeochemical model. The Controls over Ocean Mesopelagic Interior Carbon Storage (COMICS) programme will deliver new insights into the processes of carbon cycling in the mesopelagic zone and how these influence ocean carbon storage. Here we outline the programme's rationale, its goals, planned fieldwork, and modeling activities, with the aim of stimulating international collaboration.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-04-04
    Description: Arctic primary production is sensitive to reductions in sea ice cover, and will likely increase into the future. Whether this increased primary production (PP) will translate into increased export of particulate organic carbon (POC) is currently unclear. Here we report on the POC export efficiency during summer 2012 in the Atlantic sector of the Arctic Ocean. We coupled 234-thorium based estimates of the export flux of POC to onboard incubation-based estimates of PP. Export efficiency (defined as the fraction of PP that is exported below 100 m depth: ThE-ratio) showed large variability (0.09 ± 0.19–1.3 ± 0.3). The highest ThE-ratio (1.3 ± 0.3) was recorded in a mono-specific bloom of Phaeocystis pouchetii located in the ice edge. Blooming diatom dominated areas also had high ThE-ratios (0.1 ± 0.1–0.5 ± 0.2), while mixed and/or prebloom communities showed lower ThE-ratios (0.10 ± 0.03–0.19 ± 0.05). Furthermore, using oxygen saturation, bacterial abundance, bacterial production, and zooplankton oxygen demand, we also investigated spatial variability in the degree to which this sinking material may be remineralized in the upper mesopelagic (〈300 m). Our results suggest that blooming diatoms and P. pouchetii can export a significant fraction of their biomass below the surface layer (100 m) in the open Arctic Ocean. Also, we show evidence that the material sinking from a P. pouchetii bloom may be remineralized (〉100 m) at a similar rate as the material sinking from diatom blooms in the upper mesopelagic, contrary to previous findings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    facet.materialart.
    PANGAEA
    In:  Supplement to: Tremblay, Nelly; Cascella, Kévin; Toullec, Jean-Yves; Held, Christoph; Fielding, Sophie; Tarling, Geraint A; Abele, Doris (submitted): Gene expression and physiological changes of the Antarctic krill Euphausia superba under different hypoxia intensities.
    Publication Date: 2019-02-13
    Description: Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-22
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    facet.materialart.
    PANGAEA
    In:  Supplement to: Bednaršek, Nina; Tarling, Geraint A; Bakker, Dorothee C E; Fielding, Sophie; Jones, Elizabeth M; Venables, H J; Ward, Peter; Kuzirian, Alan; Lézé, Bertrand; Feely, Richard A; Murphy, Eugene J (2012): Extensive dissolution of live pteropods in the Southern Ocean. Nature Geoscience, 5(12), 881-885, https://doi.org/10.1038/ngeo1635
    Publication Date: 2019-06-04
    Description: The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite-a metastable form of calcium carbonate with rapid dissolution kinetics-may become undersaturated by 2050. Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200 m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94-1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand.
    Type: Dataset
    Format: text/tab-separated-values, 904 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    facet.materialart.
    PANGAEA
    In:  Supplement to: Manno, C; Peck, Victoria L; Tarling, Geraint A (2016): Pteropod eggs released at high pCO2 lack resilience to ocean acidification. Scientific Reports, 6, 25752, https://doi.org/10.1038/srep25752
    Publication Date: 2019-06-04
    Description: The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 matm and 1200 matm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades.
    Type: Dataset
    Format: text/tab-separated-values, 1548 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...