ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D7.11 . AtlantOS, 12 pp.
    Publication Date: 2018-11-23
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science Discussions . pp. 1-43.
    Publication Date: 2019-01-17
    Description: he characteristics of the main water masses in the Atlantic Ocean are investigated and defined as Source Water Types (SWTs) from their formation area by six key properties based on the GLODAPv2 observational data. These include both conservative (potential temperature and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate) variables. For this we divided the Atlantic Ocean into four vertical layers by distinct potential densities in the shallow and intermediate water column, and additionally by concentration of silicate in the deep waters. The SWTs in the upper/central water layer originates from subduction during winter and are defined as central waters, formed in four distinct areas; East North Atlantic Central water (ENACW), West North Atlantic Central Water (WNACW), East South Atlantic Central Water (ESACW) and West South Atlantic Central Water (WSACW). Below the upper/central layer the intermediate layer consist of three main SWTs; Antarctic Intermediate Water (AAIW), Subarctic Intermediate Water (SAIW) and Mediterranean Overflow Water (MOW). The North Atlantic Deep Water (NADW) is the dominating SWT in the deep and overflow layer, and is divided into upper and lower NADW based on the different origins and properties. The origin of both the upper and lower NADW is the Labrador Sea Water (LSW), the Iceland–Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW). Antarctic Bottom Water (AABW) is the only natural SWT in the bottom layer and this SWT is redefined as North East Atlantic Bottom Water (NEABW) in the north of equator due to the change of key properties, especial silicate. Similar with NADW, two additional SWTS, Circumpolar Deep Water (CDW) and Weddell Sea Bottom Water (WSBW), are defined in the Weddell Sea in order to understand the origin of AABW. The definition of water masses in biogeochemical space is useful for, in particular, chemical and biological oceanography to understand the origin and mixing history of water samples.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science Discussions . pp. 1-32.
    Publication Date: 2019-01-17
    Description: The distribution of the main water masses in the Atlantic Ocean are investigated with the Optimal Multi-Parameter (OMP) method. The properties of the main water masses in the Atlantic Ocean are described in a companion article; here these definitions are used to map out the general distribution of those water masses. Six key properties, including conservative (potential temperature and salinity) and non-conservative (oxygen, silicate, phosphate and nitrate), are incorporated into the OMP analysis to determine the contribution of the water masses in the Atlantic Ocean based on the GLODAP v2 observational data. To facilitate the analysis the Atlantic Ocean is divided into four vertical layers based on potential density. Due to the high seasonal variability in the mixed layer, this layer is excluded from the analysis. Central waters are the main water masses in the upper/central layer, generally featuring high potential temperature and salinity and low nutrient concentrations and are easily distinguished from the intermediate water masses. In the intermediate layer, the Antarctic Intermediate Water (AAIW) from the south can be detected to ~30°N, whereas the Subarctic Intermediate Water (SAIW), having similarly low salinity to the AAIW flows from the north. Mediterranean Overflow Water (MOW) flows from the Strait of Gibraltar as a high salinity water. NADW dominates the deep and overflow layer both in the North and South Atlantic. In the bottom layer, AABW is the only natural water mass with high silicate signature spreading from the Antarctic to the North Atlantic. Due to the change of water mass properties, in this work we renamed to North East Antarctic Bottom Water NEABW north of the equator. Similarly, the distributions of Labrador Sea Water (LSW), Iceland Scotland Overflow Water (ISOW), and Denmark Strait Overflow Water (DSOW) forms upper and lower portion of NADW, respectively roughly south of the Grand Banks between ~50 and 66°N. In the far south the distributions of Circumpolar Deep Water (CDW) and Weddell Sea Bottom Water (WSBW) are of significance to understand the formation of the AABW.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-04
    Description: We quantify the oceanic sink for anthropogenic carbon dioxide (CO 2 ) over the period 1994 to 2007 by using observations from the global repeat hydrography program and contrasting them to observations from the 1990s. Using a linear regression–based method, we find a global increase in the anthropogenic CO 2 inventory of 34 ± 4 petagrams of carbon (Pg C) between 1994 and 2007. This is equivalent to an average uptake rate of 2.6 ± 0.3 Pg C year −1 and represents 31 ± 4% of the global anthropogenic CO 2 emissions over this period. Although this global ocean sink estimate is consistent with the expectation of the ocean uptake having increased in proportion to the rise in atmospheric CO 2 , substantial regional differences in storage rate are found, likely owing to climate variability–driven changes in ocean circulation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AtlantOS
    In:  AtlantOS Deliverable, D2.7 . AtlantOS, 34 pp.
    Publication Date: 2019-03-13
    Description: Report on Tracers, Carbon and ADCPs: Report on transient tracer, carbonate system variables and ADCP data from hydrographic sections and a system to sustain these observations past AtlantOS on key hydrographic sections
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-12-01
    Type: Dataset
    Format: text/tab-separated-values, 5669 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Institut für Meereskunde, Universität Hamburg
    Publication Date: 2018-12-01
    Type: Dataset
    Format: application/x-netcdf, 4565.0 kBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-02-12
    Type: Dataset
    Format: text/tab-separated-values, 68756 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-12-01
    Type: Dataset
    Format: text/tab-separated-values, 144 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-12-01
    Type: Dataset
    Format: text/tab-separated-values, 152 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...