ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-09-22
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 2147-2157, doi:10.5194/bg-7-2147-2010.
    Description: Soil respiration (SR) constitutes the largest flux of CO2 from terrestrial ecosystems to the atmosphere. However, there still exist considerable uncertainties as to its actual magnitude, as well as its spatial and interannual variability. Based on a reanalysis and synthesis of 80 site-years for 57 forests, plantations, savannas, shrublands and grasslands from boreal to tropical climates we present evidence that total annual SR is closely related to SR at mean annual soil temperature (SRMAT), irrespective of the type of ecosystem and biome. This is theoretically expected for non water-limited ecosystems within most of the globally occurring range of annual temperature variability and sensitivity (Q10). We further show that for seasonally dry sites where annual precipitation (P) is lower than potential evapotranspiration (PET), annual SR can be predicted from wet season SRMAT corrected for a factor related to P/PET. Our finding indicates that it can be sufficient to measure SRMAT for obtaining a well constrained estimate of its annual total. This should substantially increase our capacity for assessing the spatial distribution of soil CO2 emissions across ecosystems, landscapes and regions, and thereby contribute to improving the spatial resolution of a major component of the global carbon cycle.
    Description: Data synthesis was supported by the Austrian Science Fund (FWF) grant P18756-B16 to MB. MR acknowledges funding from the European Research Council to the QUASOM project (ERC-2007-StG-208516).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-07
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Tree Physiology 31 (2011): 707-717, doi:10.1093/treephys/tpr066.
    Description: Examining the responses of root standing crop (biomass and necromass) and chemistry to soil warming is crucial for understanding root dynamics and functioning in the face of global climate change. We assessed the standing crop, total nitrogen (N) and carbon (C) compounds in tree roots and soil net N mineralization over the growing season after six years of experimental soil warming in a temperate deciduous forest in 2008. Roots were sorted into four different categories: live and dead fine roots (≤ 1 mm in diameter) and live and dead coarse roots (1-4 mm in diameter). Total root standing crop (live plus dead) in the top 10 cm of soil in the warmed area was 42.5% (378.4 vs. 658.5 g m-2) lower than in the control area, while the live root standing crops in the warmed area was 62% lower than in the control area. Soil net N mineralization over the growing season increased by 79.4% in the warmed relative to the control area. Soil warming did not significantly change the concentrations of C and carbon compounds (sugar, starch, hemicellulose, cellulose, and lignin) in the four root categories. However, total N concentration in the live fine roots in the warmed area was 10.5% (13.7 vs. 12.4 mg g-1) higher and C:N ratio was 8.6% (38.5 vs. 42.1) lower than in the control area. The increase in N concentration in the live fine roots could be attributed to the increase in soil N availability due to soil warming. Net N mineralization was negatively correlated to both live and dead fine roots in the mineral soil that is home to the majority of roots, suggesting that soil warming increases N mineralization, decreases fine root biomass, and thus decreases carbon allocation belowground.
    Description: This study was funded by the US National Science Foundation (NSF-AGS-1005663) and the Marine Biological Laboratory (to JT), China Scholarship Council (to YZ), Harvard Forest Long Term Ecological Research (NSF-DEB-0620443) and the National Institute for Climate Change Research (DOE-DE-FCO2-06-ER64157) (to JM).
    Description: 2012-08-02
    Keywords: Carbon ; Nitrogen ; Root biomass ; Root diameter ; Root necromass
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO: A Journal of the Human Environment 40 (2011): 828-831, doi:10.1007/s13280-011-0150-8.
    Description: China leads the world in afforestation, and is one of the few countries whose forested area is increasing. However, this massive ‘‘greening’’ effort has been less effective than expected; afforestation has sometimes produced unintended environmental, ecological, and socioeconomic consequences, and has failed to achieve the desired ecological benefits. Where afforestation has succeeded, the approach was tailored to local environmental conditions. Using the right plant species or species composition for the site and considering alternatives such as grassland restoration have been important success factors. To expand this success, government policy should shift from a forest-based approach to a results-based approach. In addition, long-term monitoring must be implemented to provide the data needed to develop a cost-effective, scientifically informed restoration policy.
    Description: This work was supported by the Fundamental Research Funds for the Central Universities (HJ2010-3) and the CAS/ SAFEA International Partnership Program for Creative Research Teams of ‘‘Ecosystem Processes and Services’’.
    Keywords: Afforestation policy ; Environmental degradation ; Evironmental restoration ; Reforestation ; Sustainable development
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-04
    Description: Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 119 (2014): 181-191, doi:10.1002/2013JG002460.
    Description: Plant phenology, a sensitive indicator of climate change, influences vegetation-atmosphere interactions by changing the carbon and water cycles from local to global scales. Camera-based phenological observations of the color changes of the vegetation canopy throughout the growing season have become popular in recent years. However, the linkages between camera phenological metrics and leaf biochemical, biophysical, and spectral properties are elusive. We measured key leaf properties including chlorophyll concentration and leaf reflectance on a weekly basis from June to November 2011 in a white oak forest on the island of Martha's Vineyard, Massachusetts, USA. Concurrently, we used a digital camera to automatically acquire daily pictures of the tree canopies. We found that there was a mismatch between the camera-based phenological metric for the canopy greenness (green chromatic coordinate, gcc) and the total chlorophyll and carotenoids concentration and leaf mass per area during late spring/early summer. The seasonal peak of gcc is approximately 20 days earlier than the peak of the total chlorophyll concentration. During the fall, both canopy and leaf redness were significantly correlated with the vegetation index for anthocyanin concentration, opening a new window to quantify vegetation senescence remotely. Satellite- and camera-based vegetation indices agreed well, suggesting that camera-based observations can be used as the ground validation for satellites. Using the high-temporal resolution dataset of leaf biochemical, biophysical, and spectral properties, our results show the strengths and potential uncertainties to use canopy color as the proxy of ecosystem functioning.
    Description: This research was supported by the Brown University– Marine Biological Laboratory graduate program in Biological and Environmental Sciences, Brown–ECI phenology working group, Brown Office of International Affairs Seed Grant on phenology, and Marine Biological Laboratory start-up funding for JT.
    Description: 2014-09-30
    Keywords: Green-up ; Senescence ; Phenology ; Leaf physiology ; Chlorophyll ; Vegetation spectroscopy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in AMBIO 44 (2015): 178-193, doi:10.1007/s13280-014-0545-4.
    Description: Anthropogenically derived nitrogen (N) has a central role in global environmental changes, including climate change, biodiversity loss, air pollution, greenhouse gas emission, water pollution, as well as food production and human health. Current understanding of the biogeochemical processes that govern the N cycle in coupled human–ecological systems around the globe is drawn largely from the long-term ecological monitoring and experimental studies. Here, we review spatial and temporal patterns and trends in reactive N emissions, and the interactions between N and other important elements that dictate their delivery from terrestrial to aquatic ecosystems, and the impacts of N on biodiversity and human society. Integrated international and long-term collaborative studies covering research gaps will reduce uncertainties and promote further understanding of the nitrogen cycle in various ecosystems.
    Description: 2015-07-19
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-09-22
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Agriculture, Ecosystems & Environment 212 (2015): 127-133, doi:10.1016/j.agee.2015.07.005.
    Description: Climate change is causing the intensification of both rainfall and droughts in temperate climatic zones, which will affect soil drying and rewetting cycles and associated processes such as soil greenhouse gas (GHG) fluxes. We investigated the effect of soil rewetting following a prolonged natural drought on soil emissions of nitrous oxide (N2O) and carbon dioxide (CO2) in an agricultural field recently converted from 22 years in the USDA Conservation Reserve Program (CRP). We compared responses to those in a similarly managed field with no CRP history and to a CRP reference field. We additionally compared soil GHG emissions measured by static flux chambers with off-site laboratory analysis versus in situ analysis using a portable quantum cascade laser and infrared gas analyzer. Under growing season drought conditions, average soil N2O fluxes ranged between 0.2 and 0.8 μg N m−2 min−1 and were higher in former CRP soils and unaffected by nitrogen (N) fertilization. After 18 days of drought, a 50 mm rewetting event increased N2O fluxes by 34 and 24 fold respectively in the former CRP and non-CRP soils. Average soil CO2 emissions during drought ranged from 1.1 to 3.1 mg C m−2 min−1 for the three systems. CO2 emissions increased ∼2 fold after the rewetting and were higher from soils with higher C contents. Observations are consistent with the hypothesis that during drought soil N2O emissions are controlled by available C and following rewetting additionally influenced by N availability, whereas soil CO2 emissions are independent of short-term N availability. Finally, soil GHG emissions estimated by off-site and in situ methods were statistically identical.
    Description: Financial support for this work was provided by the DOE Office of Science (DE-FC02-07ER64494) and Office of Energy Efficiency and Renewable Energy (DE-AC05-76RL01830), the US National Science Foundation LTER program (DEB 1027253), and MSU AgBioResearch. J. Tang and M. Cui were supported additionally by NSF/DBI-959333, Brown University seed funding, and the Brown University–Marine Biological Laboratory graduate program in Biological and Environmental Sciences.
    Keywords: Soil carbon ; Conservation reserve program ; N2O methodology ; Corn ; No-till
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-07
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Remote Sensing of Environment 179 (2016): 1-12, doi:10.1016/j.rse.2016.03.026.
    Description: Understanding the temporal patterns of leaf traits is critical in determining the seasonality and magnitude of terrestrial carbon and water fluxes. However, robust and efficient ways to monitor the temporal dynamics of leaf traits are lacking. Here we assessed the potential of using leaf spectroscopy to predict leaf traits across their entire life cycle, forest sites, and light environments (sunlit vs. shaded) using a weekly sampled dataset across the entire growing season at two temperate deciduous forests. The dataset includes field measured leaf-level directional-hemispherical reflectance/transmittance together with seven important leaf traits [total chlorophyll (chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and leaf mass per area (LMA)]. All leaf properties, including leaf traits and spectra, varied significantly throughout the growing season, and displayed trait-specific temporal patterns. We used a Partial Least Square Regression (PLSR) analysis to estimate leaf traits from spectra, and found a significant capability of PLSR to capture the variability across time, sites, and light environment of all leaf traits investigated (R2=0.6~0.8 for temporal variability; R2=0.3~0.7 for cross-site variability; R2=0.4~0.8 for variability from light environments). We also tested alternative field sampling designs and found that for most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate characterization of the leaf trait seasonal patterns. Increasing the sampling frequency improved in the estimation of Nmass, Cmass and LMA comparing with foliar pigments. Our results, based on the comprehensive analysis of spectra-trait relationships across time, sites and light environments, highlight the capacity and potential limitations to use leaf spectra to estimate leaf traits with strong seasonal variability, as an alternative to time-consuming traditional wet lab approaches.
    Description: This research was supported by the Brown University–Marine Biological Laboratory graduate program in Biological and Environmental Sciences, and Marine Biological Laboratory start-up funding for JT. JT was also partially supported by the U.S. Department of Energy (U.S. DOE) Office of Biological and Environmental Research grant DE-SC0006951 and the National Science Foundation grants DBI-959333 and AGS-1005663. SPS was supported in part by the U.S. DOE contract No. DE-SC00112704 to Brookhaven National Laboratory. JW was supported by the NASA Earth and Space Science Fellowship (NESSF2014).
    Keywords: Phenology ; Leaf physiology ; Foliar chemistry ; Carbon cycle ; Chlorophyll ; Carotenoids ; Nitrogen ; Leaf mass per area ; Partial least square regression (PLSR) ; Sun and shaded leaves
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-24
    Description: Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of British Ecological Society for personal use, not for redistribution. The definitive version was published in Functional Ecology 30 (2016): 295-304, doi:10.1111/1365-2435.12471.
    Description: Tropical forests represent a major terrestrial store of carbon (C), a large proportion of which is contained in the soil and decaying organic matter. Woody debris plays a key role in forest C dynamics because it contains a sizeable proportion of total forest C. Understanding the factors controlling the decomposition of organic matter in general, and woody debris in particular, is hence critical to assessing changes in tropical C storage. We conducted a factorial fertilization experiment in a tropical forest in South China to investigate the influence of nitrogen (N) and phosphorus (P) availability on woody debris decomposition using branch segments (5 cm diameter) of four species (Acacia auriculaeformis, Aphanamixis polystachya, Schefflera octophylla, and Carallia brachiata) in plots fertilized with +N, +P, or +NP, and controls. Fertilization with +P and +NP increased decomposition rates by 5–53%, and the magnitude was species specific. Contrary to expectations, we observed no negative effect of +N addition on decay rates or mass loss of woody debris in any of the four study species. Decomposition rates of woody debris were higher in species with lower C : P ratios regardless of treatment. We observed significant accumulation of P in the woody debris of all species in plots fertilized with +P and +NP during the early stages of decomposition. N release from woody debris of Acacia (N-fixing) was greater in the +P plots towards the end of the study, whereas fertilization with +N had no impact on the patterns of nutrient release during decomposition. Synthesis: Our results indicate that decomposition of woody debris is primarily constrained by P availability in this tropical forest. However, contrary to expectations, +N addition did not exacerbate P limitation. It is conceivable that decay rates of woody debris in tropical forests can be predicted by C : P or lignin : P ratios, but additional work with more tree species is needed to determine whether the patterns we observed are more generally applicable.
    Description: Natural Science Foundation of China Grant Number: 31300419; NSFC-Guangdong Joint Project Grant Number: U1131001; National Basic Research Program of China Grant Number: 2011CB403200; Innovation Foundation of Guangdong Forestry Grant Numbers: 2012KJCX013-02, 2014KJCX021-03; Strategic Priority Research Program’ of the Chinese Academy of Sciences Grant Number: XDA05070307
    Description: 2016-06-24
    Keywords: CWD ; Decay ; Deposition ; Fertilization ; Nutrient addition ; Tropical soil ; Fine woody debris
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-12-26
    Description: Author Posting. © The Author(s), 2016. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in Global Change Biology 23 (2017): 3403-3417, doi:10.1111/gcb.13620.
    Description: Extreme precipitation is predicted to be more frequent and intense accompanying global warming, and may have profound impacts on soil respiration (Rs) and its components, i.e., autotrophic (Ra) and heterotrophic (Rh) respiration. However, how natural extreme rainfall or snowfall events affect these fluxes are still lacking, especially under nitrogen (N) fertilization. In this study, extreme rainfall and snowfall events occurred during a 3-year field experiment, allowing us to examine their effects on the response of Rs, Rh and Ra to N supply. In normal rainfall years of 2011/2012 and 2012/2013, N fertilization significantly stimulated Rs by 23.9% and 10.9%, respectively. This stimulation was mainly due to the increase of Ra because of N-induced increase in plant biomass. In the record wet year of 2013/2014, however, Rs was independent on N supply because of the inhibition effect of the extreme rainfall event. Compared with those in other years, Rh and Ra were reduced by 36.8% and 59.1%, respectively, which were likely related to the anoxic stress on soil microbes and decreased photosynthates supply. Although N supply did not affect annual Rh, the response ratio (RR) of Rh flux to N fertilization decreased firstly during growing season, increased in nongrowing season and peaked during spring thaw in each year. Nongrowing season Rs and Rh contributed 5.5–16.4% to their annual fluxes, and were higher in 2012/2013 than other years due to the extreme snowfall inducing higher soil moisture during spring thaw. The RR of nongrowing season Rs and Rh decreased in years with extreme snowfall or rainfall compared to those in normal years. Overall, our results highlight the significant effects of extreme precipitation on responses of Rs and its components to N fertilization, which should be incorporated into models to improve the prediction of carbon-climate feedbacks.
    Description: This research was funded by the Chinese Academy of Sciences (XDB15020100) and the National Natural Science Foundation of China (31561143011).
    Description: 2017-12-26
    Keywords: Autotrophic respiration ; Extreme precipitation ; Heterotrophic respiration ; Nitrogen fertilization ; Nongrowing season ; Spring thaw ; Soil respiration ; Soil waterlogging
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-10-20
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 12942, doi:10.1038/s41598-017-13380-6.
    Description: Penguin guano provides favorable conditions for production and emission of greenhouse gases (GHGs). Many studies have been conducted to determine the GHG fluxes from penguin colonies, however, at regional scale, there is still no accurate estimation of total GHG emissions. We used object-based image analysis (OBIA) method to estimate the Adélie penguin (Pygoscelis adeliae) population based on aerial photography data. A model was developed to estimate total GHG emission potential from Adélie penguin colonies during breeding seasons in 1983 and 2012, respectively. Results indicated that OBIA method was effective for extracting penguin information from aerial photographs. There were 17,120 and 21,183 Adélie penguin breeding pairs on Inexpressible Island in 1983 and 2012, respectively, with overall accuracy of the estimation of 76.8%. The main reasons for the increase in Adélie penguin populations were attributed to increase in temperature, sea ice and phytoplankton. The average estimated CH4 and N2O emissions tended to be increasing during the period from 1983 to 2012 and CH4 was the main GHG emitted from penguin colonies. Total global warming potential (GWP) of CH4 and N2O emissions was 5303 kg CO2-eq in 1983 and 6561 kg CO2-eq in 2012, respectively.
    Description: This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 312231103), the Chinese Arctic and Antarctic Administration, National Natural Science Foundation of China (Grant Nos 41676176 and 41676182), the Chinese Polar Environment Comprehensive Investigation, Assessment Program.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...