ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-02-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bowman, Teresa V -- Zon, Leonard I -- England -- Nature. 2013 Feb 21;494(7437):317-8. doi: 10.1038/nature11948. Epub 2013 Feb 6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389448" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Autophagy/*genetics ; Energy Metabolism/*genetics ; Forkhead Transcription Factors/*metabolism ; *Gene Expression Regulation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Stress, Physiological/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-24
    Description: Haematopoietic stem and progenitor cell (HSPC) transplant is a widely used treatment for life-threatening conditions such as leukaemia; however, the molecular mechanisms regulating HSPC engraftment of the recipient niche remain incompletely understood. Here we develop a competitive HSPC transplant method in adult zebrafish, using in vivo imaging as a non-invasive readout. We use this system to conduct a chemical screen, and identify epoxyeicosatrienoic acids (EETs) as a family of lipids that enhance HSPC engraftment. The pro-haematopoietic effects of EETs were conserved in the developing zebrafish embryo, where 11,12-EET promoted HSPC specification by activating a unique activator protein 1 (AP-1) and runx1 transcription program autonomous to the haemogenic endothelium. This effect required the activation of the phosphatidylinositol-3-OH kinase (PI(3)K) pathway, specifically PI(3)Kgamma. In adult HSPCs, 11,12-EET induced transcriptional programs, including AP-1 activation, which modulate several cellular processes, such as migration, to promote engraftment. Furthermore, we demonstrate that the EET effects on enhancing HSPC homing and engraftment are conserved in mammals. Our study establishes a new method to explore the molecular mechanisms of HSPC engraftment, and discovers a previously unrecognized, evolutionarily conserved pathway regulating multiple haematopoietic generation and regeneration processes. EETs may have clinical application in marrow or cord blood transplantation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754787/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4754787/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Li, Pulin -- Lahvic, Jamie L -- Binder, Vera -- Pugach, Emily K -- Riley, Elizabeth B -- Tamplin, Owen J -- Panigrahy, Dipak -- Bowman, Teresa V -- Barrett, Francesca G -- Heffner, Garrett C -- McKinney-Freeman, Shannon -- Schlaeger, Thorsten M -- Daley, George Q -- Zeldin, Darryl C -- Zon, Leonard I -- 1R01HL097794-04/HL/NHLBI NIH HHS/ -- 5P30 DK49216/DK/NIDDK NIH HHS/ -- 5R01DK53298/DK/NIDDK NIH HHS/ -- 5U01 HL10001-05/HL/NHLBI NIH HHS/ -- P015P01HL32262-32/HL/NHLBI NIH HHS/ -- P30-HD18655/HD/NICHD NIH HHS/ -- P50-NS40828/NS/NINDS NIH HHS/ -- R01 CA148633/CA/NCI NIH HHS/ -- R01 HL04880/HL/NHLBI NIH HHS/ -- R0CA148633-01A5/PHS HHS/ -- R24 DK092760/DK/NIDDK NIH HHS/ -- Z01 ES025034/ES/NIEHS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Jul 23;523(7561):468-71. doi: 10.1038/nature14569.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Stem Cell Program and Division of Haematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachuestts 02115, USA [2] Chemical Biology Program, Harvard University, Cambridge, Massachusetts 02138, USA. ; Stem Cell Program and Division of Haematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachuestts 02115, USA. ; 1] Stem Cell Program and Division of Haematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachuestts 02115, USA [2] Department of Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, 80337 Munich, Germany. ; Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Haematology, St Jude Children's Research Hospital, Memphis, Tennessee 38105-3678, USA. ; Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201599" target="_blank"〉PubMed〈/a〉
    Keywords: 8,11,14-Eicosatrienoic Acid/*analogs & derivatives/metabolism ; Animals ; Cell Line ; Cell Movement ; Core Binding Factor Alpha 2 Subunit/metabolism ; Female ; Gene Expression Regulation ; *Hematopoiesis ; *Hematopoietic Stem Cell Transplantation ; Hematopoietic Stem Cells/*cytology ; Human Umbilical Vein Endothelial Cells ; Humans ; Kidney/cytology ; Male ; Mice ; Phosphatidylinositol 3-Kinases ; Transcription Factor AP-1/metabolism ; Transcription, Genetic ; Zebrafish/*embryology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2013-01-09
    Description: During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...