ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-12-03
    Description: Paramyosin is a myosin-binding protein characteristic of invertebrate animals, while troponin is a Ca 2+ -dependent regulator of muscle contraction. Both proteins are widely distributed in protostomes, while in deuterostomes, their distribution is limited; namely, presence of paramyosin and absence of troponin are common features in echinoderm muscles, while muscles of chordates contain troponin but lack paramyosin. In this study, we examined the muscle of a hemichordate, acorn worm, to clarify whether this animal is like echinoderms or like the other deuterostome animals. We found a 100-kDa protein in the smooth muscle of acorn worm. This protein was identified with paramyosin, since the purified protein formed paracrystals with a constant axial periodicity in the presence of divalent cations as paramyosin of other animals, showed ability to interact with myosin and shared common antigenicity with echinoderm paramyosin. On the other hand, troponin band was not detected in isolated thin filaments, and the filaments increased myosin-ATPase activity in a Ca 2+ -independent manner. The results indicate that troponin is lacking in thin filaments of acorn worm muscle just as in those of echinoderms. The muscle of hemichordate acorn worm is quite similar to echinoderm muscles, but different from chordate muscles.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-03-02
    Description: Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Davidson, Eric H -- Rast, Jonathan P -- Oliveri, Paola -- Ransick, Andrew -- Calestani, Cristina -- Yuh, Chiou-Hwa -- Minokawa, Takuya -- Amore, Gabriele -- Hinman, Veronica -- Arenas-Mena, Cesar -- Otim, Ochan -- Brown, C Titus -- Livi, Carolina B -- Lee, Pei Yun -- Revilla, Roger -- Rust, Alistair G -- Pan, Zheng jun -- Schilstra, Maria J -- Clarke, Peter J C -- Arnone, Maria I -- Rowen, Lee -- Cameron, R Andrew -- McClay, David R -- Hood, Leroy -- Bolouri, Hamid -- GM-61005/GM/NIGMS NIH HHS/ -- HD-37105/HD/NICHD NIH HHS/ -- RR-06591/RR/NCRR NIH HHS/ -- RR-15044/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 2002 Mar 1;295(5560):1669-78.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA. davidson@caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11872831" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Lineage ; Computational Biology ; Embryonic Development ; Endoderm/cytology/*physiology ; Gene Expression Profiling ; *Gene Expression Regulation, Developmental ; Genes, Regulator ; *Genome ; Mesoderm/cytology/*physiology ; Models, Biological ; Models, Genetic ; Morphogenesis ; Regulatory Sequences, Nucleic Acid ; Sea Urchins/*embryology/*genetics ; Stem Cells/physiology ; Systems Theory
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-041X
    Keywords: Key words Cell fate ; Skeletogenic potential ; Echinoid ; Induction ; Secondary mesenchyme cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  During the normal development of echinoids, an animal cap consisting of 8 mesomeres in a 16-cell stage embryo differentiates exclusively into ectoderm. Micromeres in an embryo at the same stage differentiate into primary mesenchyme cells (PMC) and coelomic pouch constituents. An animal cap and a quartet of micromeres were isolated from a 16-cell stage embryo and recombined to make a chimeric embryo devoid of presumptive endoderm and secondary mesenchyme cells (SMC). The PMC in the chimeric embryo were completely removed at the mesenchyme blastula stage. The PMC-depleted chimeric embryos formed an archenteron derived from the mesomeres. Some secondary mesenchyme-like cells (induced SMC) were released from the archenteron tip. A considerable fraction of the induced SMC formed the typical mesenchyme pattern after migrating into the vegetal region, synthesized skeletogenic mesenchyme cell-surface protein (msp130) and produced the larval skeleton. These findings indicate that induced SMC derived from the presumptive ectoderm have the same nature as natural SMC in both the timing of their release and their skeletogenic potential expressed in the absence of PMC.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-03-27
    Print ISSN: 0949-944X
    Electronic ISSN: 1432-041X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...