ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Publication Date: 2019-07-12
    Description: The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.
    Keywords: Composite Materials
    Type: ARC-14165-1 , NASA Tech Briefs, May 2007; 23-24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN1676 , 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference; 28 Jun. - 1 Jul. 2010; Chicago, IL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The Entry, Descent, and Landing (EDL) Technology Development Project has been tasked to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. A screening arc jet test of seven rigid ablative TPS material candidates was performed in the Hypersonic Materials Environmental Test System (HYMETS) facility at NASA Langley Research Center, in both an air and carbon dioxide test environment. Recession, mass loss, surface temperature, and backface thermal response were measured for each test specimen. All material candidates survived the Mars aerocapture relevant heating condition, and some materials showed a clear increase in recession rate in the carbon dioxide test environment. These test results supported subsequent down-selection of the most promising material candidates for further development.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Thermophysics Conference; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: For the first time ever, engineers were able to observe a heatshield on the surface of another planet after a successful entry through the atmosphere. A three-week heatshield observation campaign was conducted in December 2004 after the Mars Exploration Rover Opportunity exited "Endurance Crater." By utilizing the rover's scientific instruments, data was collected to make a qualitative assessment of the performance of the heatshield. This data was gathered to gain a better understanding of how the heatshield performed during entry through the Martian atmosphere. In addition, this unprecedented look at the heatshield offered engineers the opportunity to assess if any unexpected anomalies occurred. Once a survey of the heatshield debris was completed, multiple targets of interest were chosen for the collection of imaging data. This data was then used to assess the char depth of the thermal protection material, which compared well with design and post-flight computational predictions. Extensive imaging data was collected and showed the main seal in pristine conditions, and no observable indications of structure overheating. Additionally, unexpected vehicle dynamics during the atmospheric entry were explained by the observation of thermal blanket remnants attached to the heatshield.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Thermophysics Conference; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Office of Chief Technologist, NASA identified the need for research and technology development in part from NASAs Strategic Goal 3.3 of the NASA Strategic Plan to develop and demonstrate the critical technologies that will make NASAs exploration, science, and discovery missions more affordable and more capable. Furthermore, the Game Changing Development Program is a primary avenue to achieve the Agencys 2011 strategic goal to Create the innovative new space technologies for our exploration, science, and economic future. The National Research Council (NRC) Space Technology Roadmaps and Priorities report highlights six challenges and they are: Mass to Surface, Surface Access, Precision Landing, Surface Hazard Detection and Avoidance, Safety and Mission Assurance, and Affordability. In order for NASA to meet these challenges, the report recommends immediate focus on Rigid and Flexible Thermal Protection Systems. Rigid TPS systems such as Avcoat or SLA are honeycomb based and PICA is in the form of tiles. The honeycomb systems are manufactured using techniques that require filling of each (38 cell) by hand, and in a limited amount of time all of the cells must be filled and the heatshield must be cured. The tile systems such as PICA pose a different challenge as the low strain-to-failure and manufacturing size limitations require large number of small tiles with gap-fillers between the tiles. Recent investments in flexible ablative systems have given rise to the potential for conformal ablative TPS. A conformal TPS over a rigid aeroshell has the potential to solve a number of challenges faced by traditional rigid TPS materials. The high strain-to-failure nature of the conformal ablative materials will allow integration of the TPS with the underlying aeroshell structure much easier and enable monolithic-like configuration and larger segments (or parts) to be used. By reducing the overall part count, the cost of installation (based on cost comparisons between blanket and tile materials on shuttle) should be significantly reduced. The conformal ablator design will include a simplified design of seams between gore panels, which should eliminate the need for gap filler design, and should accommodate a wider range of allowable carrier structure imperfections when compared to a rigid material such as PICA.The Conformal TPS development project leverages the past investments made by earlier projects with a goal to develop and deliver a TRL 5 conformal TPS capable of 250 Wcm2 for missions such as MSL or COTS missions. The capabilities goal for the conformal TPS is similar to an MSL design reference mission (250 Wcm2) with matching pressures and shear environments. Both conformal and flexible carbon-felt based materials were successfully tested in stagnation aerothermal environments above 500 Wcm2 under earlier programs. Results on a myriad of materials developed during FY11 were used to determine which materials to start with in FY12. In FY12, the conformal TPS element focused on establishing materials requirements based on MSL-type and COTS Low Earth orbit (LEO) conditions (q 250 Wcm2) to develop and deliver a Conformal Ablative TPS. In FY13, development and refining metrics for mission utilization of conformal ablator technology along with assessment for potential mission stakeholders will be carried out.
    Keywords: Composite Materials
    Type: ARC-E-DAA-TN9855 , International Planetary Probe Workshop; 17-21 Jun. 2013; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: For the first time ever, engineers were able to observe a heatshield on the surface of another planet after a successful entry through the atmosphere. A three-week heatshield observation campaign was conducted in December 2004 after the Mars Exploration Rover Opportunity exited "Endurance Crater." By utilizing the rover's scientific instruments, data was collected to make a qualitative assessment of the performance of the heatshield. This data was gathered to gain a better understanding of how the heatshield performed during entry through the Martian atmosphere. In addition, this unprecedented look at the heatshield offered engineers the opportunity to assess if any unexpected anomalies occurred. Once a survey of the heatshield debris was completed, multiple targets of interest were chosen for the collection of imaging data. This data was then used to assess the char depth of the thermal protection material, which compared well with design and post-flight computational predictions. Extensive imaging data was collected and showed the main seal in pristine conditions, and no observable indications of structure overheating. Additionally, unexpected vehicle dynamics during the atmospheric entry were explained by the observation of thermal blanket remnants attached to the heatshield.
    Keywords: Spacecraft Design, Testing and Performance
    Type: 42nd AIAA Thermophysics Conference; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: For the first time ever, engineers were able to observe a heatshield on the surface of another planet after a successful entry through the atmosphere. A three-week heatshield observation campaign was conducted in December 2004 after the Mars Exploration Rover Opportunity rover exited "Endurance Crater." By utilizing the rover's scientific instruments, data was collected to make a qualitative assessment of the performance of the heatshield. This data was gathered to gain a better understanding of how the heatshield performed during entry through the Martian atmosphere. In addition, this unprecedented look at the heatshield offered engineers the opportunity to assess if any unexpected anomalies occurred. Once a survey of the heatshield debris was completed, multiple targets of interest were chosen for the collection of imaging data. This data was then used to assess the char depth of the thermal protection material, which compared well with computational predictions. Extensive imaging data was collected and showed the main seal in pristine conditions, and no observable indications of structure overheating. Additionally, unexpected vehicle dynamics during the atmospheric entry were explained by the observation of thermal blanket remnants attached to the heatshield.
    Keywords: Lunar and Planetary Science and Exploration; Fluid Mechanics and Thermodynamics
    Type: AIAA Thermophysics Conference; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: With the gradual increase in robotic rover sophistication and the desire for humans to explore the solar system, the need for reentry systems to deliver large payloads into planetary atmospheres is looming. Heritage ablative Thermal Protection Systems (TPS) using Viking or Pathfinder era materials are at or near their performance limits and will be inadequate for many future missions. Significant advances in TPS materials technology are needed in order to enable susequent human exploration missions. This paper summarizes some recent progress at NASA in developing families of advanced rigid ablative TPS that could be used for thermal protection in planetary entry missions. In particular, the effort focuses on technologies required to land heavy masses on Mars to facilitate exploration.
    Keywords: Space Sciences (General)
    Type: AIAA Aerospace Sciences Meeting; 9-12 Jan. 2012; Nashville, TN; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Design, Testing and Performance
    Type: International Planetary Probe Workshop; 17-21 Jul. 2013; San Jose, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Thermophysics Conference; 27-30 Jun. 2011; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...