ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 11 (1977), S. 785-789 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 25 (1991), S. 1612-1618 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 27 (1993), S. 2079-2085 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 17 (1983), S. 717-721 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 279-286 
    ISSN: 1476-5535
    Keywords: Crude oil ; Biodegradation ; Nitrogen source ; Respirometry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The effects of NH4Cl and KNO3 on biodegradation of light Arabian crude oil by an oil-degrading enrichment culture were studied in respirometers. In poorly buffered sea salts medium, the pH decreased dramatically in cultures that contained NH4Cl, but not in those supplied with KNO3. The ammonia-associated pH decline was severe enough to completely stop oil biodegradation as measured by oxygen uptake. Regular adjustment of the culture pH allowed oil biodegradation to proceed normally. A small amount of nitrate accumulated in all cultures that contained ammonia, but nitrification accounted for less than 5% of the acid that was observed. The nitrification inhibitor, nitrapyrin, had no effect on the production of nitrate or acid in ammonia-containing cultures. When the culture pH was controlled, either by regular adjustment of the culture pH or by supplying adequate buffering capacity in the growth medium, the rate and extent of oil biodegradation were similar in NH4Cl- and KNO3-containing cultures. the lag time was shorter in pH-controlled cultures supplied with ammonia than in nitrate-containing cultures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 287-296 
    ISSN: 1572-9729
    Keywords: asphaltene ; bioavailability ; biodegradation ; crude oil ; diffusivity ; modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Crude oil is a complex mixture ofseveral different structural classes of compoundsincluding alkanes, aromatics, heterocyclic polarcompounds, and asphaltenes. The rate and extent ofmicrobial degradation of crude oil depends on theinteraction between the physical and biochemicalproperties of the biodegradable compounds and theirinteractions with the non-biodegradable fraction. Inthis study we have systematically altered theconcentration of non-biodegradable material in thecrude oil and analyzed its impact on transport of thebiodegradable components of crude oil to themicroorganisms. We have also developed a mathematicalmodel that explains and accounts for the dependence ofbiodegradation of crude oil through a putativebioavailability parameter. Experimental resultsindicate that as the asphaltene concentration in oilincreases, the maximum oxygen uptake in respirometersdecreases. The mathematically fitted bioavailabilityparameter of degradable components of oil alsodecreases as the asphaltene concentration increases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 583-594 
    ISSN: 0006-3592
    Keywords: trickle-bed biofilter ; mathematical model ; volatile organic compound (VOC) ; waste gas treatment ; biofiltration ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The objective of this article is to define and validate a mathematical model that desribes the physical and biological processes occurring in a trickle-bed air biofilter for waste gas treatment. This model considers a two-phase system, quasi-steady-state processes, uniform bacterial population, and one limiting substrate. The variation of the specific surface area with bacterial growth is included in the model, and its effect on the biofilter performance is analyzed. This analysis leads to the conclusion that excessive accumulation of biomass in the reactor has a negative effect on contaminant removal efficiency. To solve this problem, excess biomass is removed via full media fluidization and backwashing of the biofilter. The backwashing technique is also incorporated in the model as a process variable. Experimental data from the biodegradation of toluene in a pilot system with four packed-bed reactors are used to validate the model. Once the model is calibrated with the estimation of the unknown parameters of the system, it is used to simulate the biofilter performance for different operating conditions. Model predictions are found to be in agreement with experimental data. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 583-594, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 43-53 
    ISSN: 0006-3592
    Keywords: acetate ; anaerobic biofilms ; mass transfer ; pH ; biofilm modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A detailed model acetate-utilizing methanogenic biofilms accounting for the diffusion of neutral and ionic species, chemical equilibrium, electroneutrality, gas production within the biofilm, pH-dependent Monod kinetics, and the presence of a concentration boundary layer is presented. The model qualitatively fits the pH profiles that are reported for acetate-utilizing methanogenic aggregates. A sensitivity analysis on the biological parameters showed that the flux of acetate is sensitive to the maximum utilization rate, half-saturation constant, and biofilm density for the bulk conditions investigated. Criteria when traditional biofilm models can be used to predict the flux of acetate into the biofilm are established. If the maximum pH change predicted using a hypothetical system is within ±0.05, the traditional model predicts the flux to within ±5% of the value calculated with the model developed in this study. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 54-61 
    ISSN: 0006-3592
    Keywords: anaerobic biofilm ; CSTR ; reactors, nonide ; pH ; plug-flow reactors ; biofilm modeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A rigorous steady-state model of anaerobic biofilm reactors taking into account acid-base and gas-phase equilibria in the reactor in conjunction with detailed chemical equilibria and mass transfer in acetate-utilizing methanogenic biofilms is presented. The performances of ideal completely stirred tank reactors (CSTRs) and plug-flow reactors, as well as reactors with nonideal hydraulic conditions, are simulated. Decreasing the surface loading rate increases the acetate removal efficiency, while decreasing the influent pH and increasing the buffering capacity improves the removal efficiency only if the bulk pH of the reactor shifts toward more optimal values between 6.8 to 7.0. The reactor can have negative or positive removal efficiencies depending on the start-up conditions. The respiration coefficient plays a critical role in determining the minimum influent pH required for reactor recovery after failure. Having multiple CSTRs-in-series generally increases the overall removal efficiency for the influent conditions investigated. Monitoring of the influent feed quality is critical for plug-flow reactors, becasue failure of the initial sections of the reactor may cause a cascading effect that may lead to a rapid reactor failure. © 1995 John Wiley & Sons, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 25 (1983), S. 1581-1596 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...