ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-05
    Description: The tip clearance flows of transonic compressor rotors have a significant impact on rotor and stage performance. Although numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because, in high-speed machines, measurements acquired in sufficient detail to be useful are rare. Researchers at the NASA Glenn Research Center at Lewis Field compared measured tip clearance flow details (e.g., trajectory and radial extent) of the NASA Rotor 35 with results obtained from a numerical simulation. Previous investigations had focused on capturing the detailed development of the jetlike flow leaking through the clearance gap between the rotating blade tip and the stationary compressor shroud. However, we discovered that the simulation accuracy depends primarily on capturing the detailed development of a wall-bounded shear layer formed by the relative motion between the leakage jet and the shroud.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-01
    Description: Nonintrusive, three-dimensional, measurements have been made of a normal shock wave-turbulent boundary layer interaction. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. LDA, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The reported results are believed to accurately define the flow physics of each case and may be used as benchmark data to verify three-dimensional computer codes.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 87-1369
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-01
    Description: State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements have been obtained in the wake of a transonic axial flow fan rotor.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 85-1133
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Unsteady velocity field measurements made within the stator row of a transonic axial-flow fan are presented. Measurements were obtained at midspan for two different stator blade rows using a laser anemometer. The first stator row consists of double circular-arc airfoils with a solidity of 1.68. The second features controlled-diffusion airfoils with a solidity of 0.85. Both were tested at design-speed peak efficiency conditions. In addition, the controlled-diffusion stator was also tested at near stall conditions. The procedures developed here are used to identify the rotor wake generated and unresolved unsteadiness from the velocity measurements (rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and unresolved unsteadiness refers to all remaining unsteadiness which contributes to the spread in the distribution of velocities such as vortex shedding, turbulence, etc.). Auto and cross correlations of these unsteady velocity fluctuations are presented to show their relative magnitude and spatial distributions. Amplification and attenuation of both rotor wake generated and unresolved unsteadiness are shown to occur within the stator blade passage.
    Keywords: AERODYNAMICS
    Type: NAS 1.15:88946 , USAAVSCOM-TR-86-C-31 , E-3394 , NASA-TM-88946
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: This two-part paper presents laser anemometer measurements of the unsteady velocity field within the stator row of a transonic axial-flow fan. The objective is to provide additional insight into unsteady blade-row interactions within high speed compressors which affect stage efficiency, energy transfer, and other design considerations. Part 1 describes the measurement and analysis techniques used for resolving the unsteady flow field features. The ensemble-average and variance of the measured velocities are used to identify the rotor wake generated and unresolved unsteadiness, respectively. (Rotor wake generated unsteadiness refers to the unsteadiness generated by the rotor wake velocity deficit and the term unresolved unsteadiness refers to all remaining contributions to unsteadiness such as vortex shedding, turbulence, mass flow fluctuations, etc.). A procedure for calculating auto and cross correlations of the rotor wake generated and unresolved unsteady velocity fluctuations is described. These unsteady-velocity correlations have significance since they also result from a decomposition of the Navier-Stokes equations. This decomposition of the Navier-Stokes equations resulting in the velocity correlations used to describe the unsteady velocity field will also be outlined in this paper.
    Keywords: AERODYNAMICS
    Type: E-3393 , NASA-TM-88945 , NAS 1.15:88945 , USAAVSCOM-TR-86-C-30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Laser anemometer surveys were made of the 3-D flow field in NASA rotor 67, a low aspect ratio transonic axial-flow fan rotor. The test rotor has a tip relative Mach number of 1.38. The flowfield was surveyed at design speed at near peak efficiency and near stall operating conditions. Data is presented in the form of relative Mach number and relative flow angle distributions on surfaces of revolution at nine spanwise locations evenly spaced from hub to tip. At each spanwise location, data was acquired upstream, within, and downstream of the rotor. Aerodynamic performance measurements and detailed rotor blade and annulus geometry are also presented so that the experimental results can be used as a test case for 3-D turbomachinery flow analysis codes.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TP-2879 , E-4480 , NAS 1.60:2879
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-08-31
    Description: Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
    Keywords: AERODYNAMICS
    Type: NASA, Langley Research Center, Transonic Symposium: Theory, Application, and Experiment, Volume 1, Part 2; p 741-764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The discipline research in turbomachinery, which is directed toward building the tools needed to understand such a complex flow phenomenon, is based on the fact that flow in turbomachinery is fundamentally unsteady or time dependent. Success in building a reliable inventory of analytic and experimental tools will depend on how the time and time-averages are treated, as well as on who the space and space-averages are treated. The raw tools at disposal (both experimentally and computational) are truly powerful and their numbers are growing at a staggering pace. As a result of this power, a case can be made that a situation exists where information is outstripping understanding. The challenge is to develop a set of computational and experimental tools which genuinely increase understanding of the fluid flow and heat transfer in a turbomachine. Viewgraphs outline a philosophy based on working on a stairstep hierarchy of mathematical and experimental complexity to build a system of tools, which enable one to aggressively design the turbomachinery of the next century. Examples of the types of computational and experimental tools under current development at Lewis, with progress to date, are examined. The examples include work in both the time-resolved and time-averaged domains. Finally, an attempt is made to identify the proper place for Lewis in this continuum of research.
    Keywords: AIRCRAFT PROPULSION AND POWER
    Type: Aeropropulsion '87. Session 3: Internal Fluid Mechanics Research; 23 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-31
    Description: Several flow phenomena including flowfield periodicity, rotor shock oscillation, and rotor shock system geometry were investigated in a transonic low aspect ratio fan rotor using laser anemometry. Flow periodicity is found to increase with increasing rotor pressure rise, and to correlate with blade geometry variations. Analysis of time-accurate laser anemometer data indicates that the rotor shock oscillates about its mean location with an amplitude of 3 to 4 percent of rotor chord. The shock surface is nearly two-dimensional or levels of rotor pressure rise at and above the peak efficiency level but becomes more complex for lower levels of pressure rise. Spanwise shock lean generates radial flows due to streamline deflection in the hub-to-shroud streamsurface.
    Keywords: AERODYNAMICS
    Type: NAS 1.15:83555 , E-1934 , NASA-TM-83555
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-31
    Description: A fringe-type laser anemometer with innovative features is described. The innovative features include: (1) rapid, efficient data acquisition processes, (2) detailed graphic display of data being accumulated, and (3) input laser-beam positioning that allows greater optical access to the intrarotor region. Results are presented that demonstrate the anemometer's capability in flow mapping within a transonic axial-flow compressor rotor.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: E-276 , NASA-TP-1663
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...