ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
  • 2
    facet.materialart.
    Unknown
    In:  (Diploma thesis), Christian-Albrechts-Universität Kiel, Kiel, Germany, 81 pp
    Publication Date: 2013-05-10
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights: • Effect of sea freshening on keystone predator impact, Asterias rubens, assessed. • Three ecologically relevant salinity treatments (18, 15, 12ppt). • Zero consumption occurred at the lowest, “future” treatment. • Consumption found to mirror larval recruitment results. • Likely implications for the structuring and functioning of ecological communities. Abstract: Predicting the myriad effects of climate change on ecological communities is a major challenge for scientists, and to date relatively few studies have focused on the effects of sea freshening on species interactions. In particular, changes in keystone species predatory effects could be pervasive. Here, we assess the consequences of decreasing salinity on the ecological impact exerted by a keystone predatory sea star, Asterias rubens. We quantified sea star functional responses (FRs; per capita predation as a function of prey density) under decreasing salinity treatments aligned with climate change projections (18ppt, 15ppt, 12ppt). Furthermore, we combined FRs with larval recruitment estimates, i.e. ecological “Impact Potential”, to act as an ecological indicator of predator population-level responses under this environmental change. Attack and maximum feeding rates of sea stars were reduced by decreasing salinities, with no instances of predation found at 12ppt. Given that decreasing salinities also reduced larval sea star recruitment, the overall Impact Potential of this keystone predator species was lessened by decreased salinity. Sea freshening projections by the end of this century could thus drive significant decreases in the effects of this keystone predator, with serious implications for the structuring and functioning of ecological communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: The international pet trade is a major driver of non-native species spread, including species both sold in the trade, and organisms incidentally transported alongside. Here, we document the discovery of invasive zebra mussels, Dreissena polymorpha, in Germany, transported alongside a commonly traded garden pond snail and European native, Viviparus viviparus, ordered from a German pet website. We highlight that the trade poses yet another way in which zebra mussels and other invasive species can expand their invaded range into novel ecosystems. We call for stricter biosecurity enforcement towards sellers, and encourage raising awareness amongst customers to inhibit the further spread of invasive species through the pet trade.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The pet trade has facilitated the spread of invasive alien species (IAS) globally, with negative consequences for biodiversity. The prediction of impacts is a major goal for invasion ecologists, and is especially crucial in an industry often lacking knowledge about traded species. We focused on the predatory gastropod Anentome helena, a species originating in south-east Asia and traded around the world, but with taxonomic uncertainty. We first set out to determine where our study organism fell within the A. "helena" species complex, known to comprise at least four cryptic species, before assessing the effect of temperature on the number of prey, the pulmonate snail Physella acuta, killed per predator via functional response experiments at two temperatures. We used 22 degrees C as a recommended temperature for housing the species in captivity, and 18 degrees C as a representative summer lake temperature in temperate climates of Europe. We also assessed the role of predator group size (1x, 2x, 3x) on predation (total consumption and average per capita consumption) at the experimental temperatures with fixed densities of prey, as well as the effect of these temperatures on prey activity. Our organisms belonged to a cryptic species originating from Thailand (Anentome sp. A), matching the findings of aquarium trade samples in other continents. In the functional response experiments, we found maximum feeding rate to be significantly reduced at the lower temperature. A similar result ensued from group feeding, with total consumption significantly reduced and the reduction in average per capita consumption approaching significance at the lower temperature. There was no significant effect of group size on the average per capita consumption in the group trial, indicating neutral conspecific interactions. No significant effect of temperature on the activity of the prey species was found, suggesting decreased consumption was mainly driven by predator, rather than prey. These results suggest limited A. helena impacts in the short-term, but increasing temperatures with climate change may facilitate greater consequences from releases. We suggest future studies assess other potential predatory impacts and survival across relevant abiotic conditions, and encourage the use of similar methods to assess the impacts of other commonly traded species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Aim: The spread of invasive non‐native species (INNS) will pose major threats to global biodiversity over the coming decades. However, predicting how key effects of climate change will influence the abilities of INNS to establish and exert ecological impact is a major challenge. One overlooked aspect of global change is the expected freshening of certain marine systems, which may interact with INNS and lead to drastic effects on community structure and stability. Location: Baltic Sea, Europe. Methods: Here, using three predatory amphipod crustaceans, we experimentally assessed how salinity reduction may affect the impacts of the emerging INNS, Pontogammarus maeoticus, relative to an existing INNS, Gammarus tigrinus and a trophically analogous native, Gammarus salinus. We quantified per capita impacts of the three species via the comparative functional response method (prey consumption over a range of prey densities) under a predicted seawater freshening scenario. We then combined amphipod functional responses with their life history traits to compare population‐level relative impact potential (RIP) on prey of the three amphipod species across salinities. Results: Freshening substantially altered the predicted relative ecological impacts of both the INNS compared with the native. First, the functional responses of invasive P. maeoticus and G. tigrinus increased under freshening, while that of the native G. salinus decreased. Second, RIP became consistently higher for both the INNS compared to the native with increased freshening. Main conclusions: Our methods thus reveal potential for climate change via seawater freshening to drive large shifts in dominance and ecological impacts of INNS compared with natives. With the number of INNS introductions unlikely to saturate in the near future, we highlight the need to assess the impacts of potential future INNS, alongside established non‐natives and native species, in combination with abiotic changes associated with climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment amongst studies originating from disparate geographic locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width, height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82–0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14–24.19%. Similarly, narrow 95%–confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7–2.0, MAE: ±0.7–2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographic unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...