ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-12-17
    Description: Ocean acidification (OA) threatens coral reef ecosystems by slowing calcification and enhancing dissolution of calcifying organisms and sediments. Nevertheless, multiple factors have been shown to modulate OA's impact on calcification, including the nutritional status of the coral host. In three separate experiments, we exposed juveniles of the Atlantic golf ball coral, Favia fragum, to elevated CO2 and varied nutritional (light or feeding) conditions. Juveniles reared from planulae larvae were significantly larger and produced more CaCO3 when fed, regardless of CO2 level. However, corals subjected to elevated CO2 produced less CaCO3 per mm2 regardless of feeding condition. Additionally, unfed corals reared under elevated light levels exhibited lower chlorophyll a and higher total lipid content, but light had no significant effect on coral calcification. Conversely, elevated CO2 had a significant, negative affect on calcification, regardless of light condition but no detectable effect on physiological tissue parameters. Our results indicate that the sensitivity of juvenile F. fragum calcification to OA was neither modulated by light nor by feeding, despite physiological indications of enhanced nutritional status. This suggests that corals do not necessarily divert energy to maintain calcification under high CO2, even when they have the energetic resources to do so.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Megascale pollution of the open ocean 185 km off the coast of New Jersey was maintained from March 1986 to July 1992 through dumping of municipal sewage sludge at a rate of 8-9 million wet metric tons per annum1. The potential for pertur-bation and/or environmental degradation of benthopelagic and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-07
    Description: Author Posting. © The Author(s), 2005. This is the author's version of the work. It is posted here by permission of American Society of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 50 (2005): 1520-1528.
    Description: Late stage larvae (cyprids) of the barnacle Semibalanus balanoides frequently encounter freezing conditions along the northwest Atlantic coast. S. balanoides cyprids survived for more than 4 weeks embedded in sea ice, and a significant fraction of larvae held in ice up to 2 weeks successfully settled and metamorphosed after thawing. Larvae that completed metamorphosis continued to develop and reproduce. In settlement experiments with cyprids of known age and where settled cyprids were removed every other day from the experimental containers, cyprids held in ice for 2 weeks settled and metamorphosed more than nonfrozen larvae. Mean time to metamorphosis was longer for frozen cyprids than for nonfrozen ones, and maximum time to metamorphosis was 38 d for cyprids held in sea ice for 2 weeks and 26 d for cyprids in nonfrozen treatments. Larval tolerance to freezing conditions greatly expands the environmental tolerance repertoire of marine invertebrates and may help explain the ecological success of this widespread intertidal species.
    Description: This work was supported by the U.S. National Science Foundation (OCE-9986627 and OCE-0083976).
    Keywords: Semibalanus balanoides ; Larval tolerance ; Freezing conditions
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 506617 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-04
    Description: Author Posting. © The Authors, 2008. This article is posted here by permission of Sears Foundation for Marine Research for personal use, not for redistribution. The definitive version was published in Journal of Marine Research 66 (2008): 275-297, doi:10.1357/002224008785837167.
    Description: Planktonic larval settlement can be a major determinant of population and community dynamics. Settlement templates of benthic invertebrates have been attributed to biological, chemical, and hydrodynamic mechanisms. Completely unexplored, however, is the role of patchy, but widespread, flocculated particulates (“floc”) that intermittently rest on substrate surfaces. Motivated by observations of very high (of order 106 m-3) larval/postlarval densities in floc from a coastal embayment, this study experimentally identified physical and behavioral mechanisms responsible for these associations. In annular-flume studies, sediment cores were mounted flush with the channel bottom, serving as the floc source. Larval (Capitella sp. I, a polychaete worm) distributions in the flume were consistent with predictions for transported particulates. Floc and larvae accumulated at the channel inner corner in high flows (shear velocities, u*, of 0.8 and 1.6 cm s-1), but not in low flows (u* of 0, 0.2 and 0.4 cm s-1). Inner-corner concentrations of larvae/floc resulted from a predictable, cross-channel, bottom flow in that direction. In still-water behavioral assays, there were no significant differences in percent metamorphosis among flocs fabricated from particulate-laden seawater, conspecific fecal pellets (compact floc) and organic-rich sediment. Surficial aggregates clearly were acceptable settlement substratum. This study is the first to show that settling larvae associate with surficial aggregates via both physical and behavioral mechanisms. Floc may be a transient larval venue facilitating habitat search, providing nutrition, or offering protection from predators. Alternatively, it could confer high mortality, reducing larval flux to the bed. Associations between larvae and floc do not supersede established mechanisms of habitat selection. They just thicken the plot.
    Description: This study was supported by the National Science Foundation (OCE 97-29972 and OCE 02-42321), NOAA California Sea Grant College Program (R/F-197) and the UCLA Council on Research.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-05
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Coral Reefs 29 (2010): 883-891, doi:10.1007/s00338-010-0652-z.
    Description: Natural geochemical signatures in calcified structures are commonly employed to retrospectively estimate dispersal pathways of larval fish and invertebrates. However, the accuracy of the approach is generally untested due to the absence of individuals with known dispersal histories. We used genetic parentage analysis (genotyping) to divide 110 new recruits of the orange clownfish, Amphiprion percula, from Kimbe Island, Papua New Guinea, into two groups: “self-recruiters” spawned by parents on Kimbe Island and “immigrants” that had dispersed from distant reefs (〉10km away). Analysis of daily increments in sagittal otoliths found no significant difference in PLDs or otolith growth rates between self-recruiting and immigrant larvae. We also quantified otolith Sr/Ca and Ba/Ca ratios during the larval phase using laser ablation inductively coupled plasma mass spectrometry. Again, we found no significant differences in larval profiles of either element between self-recruits and immigrants. Our results highlight the need for caution when interpreting otolith dispersal histories based on natural geochemical tags in the absence of water chemistry data or known-origin larvae with which to test the discriminatory ability of natural tags.
    Description: Research was supported by the Australian Research Council, the Coral Reef Initiatives for the Pacific (CRISP), the Global Environmental Facility CRTR Connectivity Working Group, the Total Foundation, a National Science Foundation grant (#0424688) to SRT, and a National Science Foundation Graduate Research Fellowship to MLB.
    Keywords: Amphiprion percula ; Connectivity ; Natural markers ; Otolith chemistry ; Papua New Guinea ; Pelagic larval duration
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-04
    Description: Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 58 (2013): 1531-1545, doi:10.4319/lo.2013.58.5.1531.
    Description: In summer 2010, a bleaching event decimated the abundant reef flat coral Stylophora pistillata in some areas of the central Red Sea, where a series of coral reefs 100–300 m wide by several kilometers long extends from the coastline to about 20 km offshore. Mortality of corals along the exposed and protected sides of inner (inshore) and mid and outer (offshore) reefs and in situ and satellite sea surface temperatures (SSTs) revealed that the variability in the mortality event corresponded to two spatial scales of temperature variability: 300 m across the reef flat and 20 km across a series of reefs. However, the relationship between coral mortality and habitat thermal severity was opposite at the two scales. SSTs in summer 2010 were similar or increased modestly (0.5°C) in the outer and mid reefs relative to 2009. In the inner reef, 2010 temperatures were 1.4°C above the 2009 seasonal maximum for several weeks. We detected little or no coral mortality in mid and outer reefs. In the inner reef, mortality depended on exposure. Within the inner reef, mortality was modest on the protected (shoreward) side, the most severe thermal environment, with highest overall mean and maximum temperatures. In contrast, acute mortality was observed in the exposed (seaward) side, where temperature fluctuations and upper water temperature values were relatively less extreme. Refuges to thermally induced coral bleaching may include sites where extreme, high-frequency thermal variability may select for coral holobionts preadapted to, and physiologically condition corals to withstand, regional increases in water temperature.
    Description: J.C.B.S. was partially supported by Fundac¸a˜o para a Cieˆncia e a Tecnologia (project PEst-C/MAR/LA0015/2011) and by the European Regional Development Fund through the Operational Competitiveness Programme (National Strategic Reference Framework). Kristen Davis was partially supported by a Woods Hole Oceanographic Institution postdoctoral scholarship. This research was supported by KAUST with awards USA 00002 and KSA 00011.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-02
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PeerJ 4 (2016): e1770, doi:10.7717/peerj.1770.
    Description: A research cruise to Hannibal Bank, a seamount and an ecological hotspot in the coastal eastern tropical Pacific Ocean off Panama, explored the zonation, biodiversity, and the ecological processes that contribute to the seamount’s elevated biomass. Here we describe the spatial structure of a benthic anomuran red crab population, using submarine video and autonomous underwater vehicle (AUV) photographs. High density aggregations and a swarm of red crabs were associated with a dense turbid layer 4–10 m above the bottom. The high density aggregations were constrained to 355–385 m water depth over the Northwest flank of the seamount, although the crabs also occurred at lower densities in shallower waters (∼280 m) and in another location of the seamount. The crab aggregations occurred in hypoxic water, with oxygen levels of 0.04 ml/l. Barcoding of Hannibal red crabs, and pelagic red crabs sampled in a mass stranding event in 2015 at a beach in San Diego, California, USA, revealed that the Panamanian and the Californian crabs are likely the same species, Pleuroncodes planipes, and these findings represent an extension of the southern endrange of this species. Measurements along a 1.6 km transect revealed three high density aggregations, with the highest density up to 78 crabs/m2, and that the crabs were patchily distributed. Crab density peaked in the middle of the patch, a density structure similar to that of swarming insects.
    Description: This work was sponsored by a grant from the Dalio Foundation, Inc, through the Woods Hole Oceanographic Institution.
    Keywords: Swarms ; Ecological hotspot ; Patchiness ; Panama ; Eastern Pacific ; Seamount ; Pleuroncodes planipes ; Hypoxic environment ; Anomuran crabs
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Population Ecology 51 (2009): 17-32, doi:10.1007/s10144-008-0118-0.
    Description: Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model oriented. Simplified approaches identify “macrcoecological” patterns or attempt to identify and model the essential, “first order” elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, as well as larval production. Moreover, these processes are non-linear, some interact, and they may operate at disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and “broad-brush first order approaches” may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it appears impossible to achieve a full mechanistic understanding of recruitment by studying all components of the problem in isolation, we suggest that knowledge of these components is essential for simplifying and understanding the system beyond probabilistic description and modeling.
    Description: We wish to thank WHOI’s Ocean Life Institute for support
    Keywords: Recruitment ; Benthic populations ; Population dynamics ; Larval transport ; Larval dispersal ; Settlement ; Complexity ; Models
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-01-04
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 392 (2010): 9-21, doi:10.1016/j.jembe.2010.04.008.
    Description: Marine broadcast spawners have two-phase life cycles, with pelagic larvae and benthic adults. Larval supply and settlement link these two phases and are crucial for the persistence of marine populations. Mainly due to the complexity in sampling larval supply accurately, many researchers use settlement as a proxy for larval supply. Larval supply is a constraining variable for settlement because, without larval supply, there is no settlement. Larval supply and settlement may not be well correlated, however, and settlement may not consistently estimate larval supply. This paper explores the argument that larval supply (i.e., larval abundance near settlement sites) may not relate linearly to settlement. We review the relationship between larval supply and settlement, from estimates and biases in larval supply sampling, to non-behavioral and behavioral components, including small-scale hydrodynamics, competency, gregarious behavior, intensification of settlement, lunar periodicity, predation and cannibalism. Physical and structural processes coupled with behavior, such as small-scale hydrodynamics and intensification of settlement, sometimes result in under- or overestimation of larval supply, where it is predicted from a linear relationship with settlement. Although settlement is a function of larval supply, spatial and temporal processes interact with larval behavior to distort the relationship between larval supply and settlement, and when these distortions act consistently in time and space, they cause biased estimates of larval supply from settlement data. Most of the examples discussed here suggest that behavior is the main source of the decoupling between larval supply and settlement because larval behavior affects the vertical distribution of larvae, the response of larvae to hydrodynamics, intensification of settlement, gregariousness, predation and cannibalism. Thus, larval behavior seems to limit broad generalizations on the regulation of settlement by larval supply. Knowledge of the relationship is further hindered by the lack of a well founded theoretical relationship between the two variables. The larval supply- settlement transition may have strong general consequences for population connectivity, since larval supply is a result of larval transport, and settlement constrains recruitment. Thus, measuring larval supply and settlement effectively allows more accurate quantification and understanding of larval transport, recruitment and population connectivity.
    Description: JP would like to thank WHOI Ocean Life Institute for partial funding. FP’s contribution is based upon research supported by the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation.
    Keywords: Invertebrates ; Behavior ; Barnacle
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-09-23
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Ecology 10 (2010): 24, doi:10.1186/1472-6785-10-24.
    Description: Intense consumer pressure strongly affects the structural organization and function of marine ecosystems, while also having a profound effect on the phenotype of both predator and prey. Allelochemicals produced by prey often render their tissues unpalatable or toxic to a majority of potential consumers, yet some marine consumers have evolved resistance to host chemical defenses. A key challenge facing marine ecologists seeking to explain the vast differences in consumer tolerance of dietary allelochemicals is understanding the biochemical and molecular mechanisms underlying diet choice. The ability of marine consumers to tolerate toxin-laden prey may involve the cooperative action of biotransformation enzymes, including the inducible cytochrome P450s (CYPs), which have received little attention in marine invertebrates despite the importance of allelochemicals in their evolution. Here, we investigated the diversity, transcriptional response, and enzymatic activity of CYPs possibly involved in allelochemical detoxification in the generalist gastropod Cyphoma gibbosum, which feeds exclusively on chemically defended gorgonians. Twelve new genes in CYP family 4 were identified from the digestive gland of C. gibbosum. Laboratory-based feeding studies demonstrated a 2.7- to 5.1-fold induction of Cyphoma CYP4BK and CYP4BL transcripts following dietary exposure to the gorgonian Plexaura homomalla, which contains high concentrations of anti-predatory prostaglandins. Phylogenetic analysis revealed that C. gibbosum CYP4BK and CYP4BL were most closely related to vertebrate CYP4A and CYP4F, which metabolize pathophysiologically important fatty acids, including prostaglandins. Experiments involving heterologous expression of selected allelochemically-responsive C. gibbosum CYP4s indicated a possible role of one or more CYP4BL forms in eicosanoid metabolism. Sequence analysis further demonstrated that Cyphoma CYP4BK/4BL and vertebrate CYP4A/4F forms share identical amino acid residues at key positions within fatty acid substrate recognition sites. These results demonstrate differential regulation of CYP transcripts in a marine consumer feeding on an allelochemical-rich diet, and significantly advance our understanding of both the adaptive molecular mechanisms that marine consumers use to cope with environmental chemical pressures and the evolutionary history of allelochemical-metabolizing enzymes in the CYP superfamily.
    Description: Financial support for this work was provided by the Ocean Life Institute Tropical Research Initiative Grant (WHOI) to KEW and MEH; the Robert H. Cole Endowed Ocean Ventures Fund (WHOI) to KEW; the National Undersea Research Center - Program Development Proposal (CMRC-03PRMN0103A) to KEW and a National Science Foundation Graduate Research Fellowship to KEW.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...