ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2011-10-18
    Description: Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of the Regional Atmospheric Climate Model (RACMO2), applied to the Greenland ice sheet. In RACMO2, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of RACMO2. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-07-11
    Description: Retention and refreezing of meltwater are acknowledged to be important processes for the mass budget of polar glaciers and ice sheets. Several parameterizations of these processes exist for use in energy and mass balance models. Due to a lack of direct observations, validation of these parameterizations is difficult. In this study we compare a set of 6 refreezing parameterizations against output of two Regional Climate Models (RCMs) coupled to an energy balance snow model, the Regional Atmospheric Climate Model (RACMO2) and the Modèle Atmosphérique Régional (MAR), applied to the Greenland ice sheet. In both RCMs, refreezing is explicitly calculated in a snow model that calculates vertical profiles of temperature, density and liquid water content. Between RACMO2 and MAR, the ice sheet-integrated amount of refreezing differs by only 4.9 mm w.e yr−1 (4.5 %), and the temporal and spatial variability are very similar. For consistency, the parameterizations are forced with output (surface temperature, precipitation and melt) of the RCMs. For the ice sheet-integrated amount of refreezing and its inter-annual variations, all parameterizations give similar results, especially after some tuning. However, the spatial distributions differ significantly and the spatial correspondence between the RCMs is better than with any of the parameterizations. Results are especially sensitive to the choice of the depth of the thermally active layer, which determines the cold content of the snow in most parameterizations. These results are independent of which RCM is used to force the parameterizations.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-21
    Description: It is still an open question how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-12-04
    Description: During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate–land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate–ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-23
    Description: During the Cenozoic, land ice and climate have interacted on many different time scales. On long time scales, the effect of land ice on global climate and sea level is mainly set by large ice sheets on North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally-averaged energy balance climate model is coupled to five one-dimensional ice-sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2-record from ice cores samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level, that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long time scales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height temperature feedback. Furthermore, we assess the influence of CO2 and insolation, by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for Northern Hemispheric glaciation.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-10
    Description: A still open question is how equilibrium warming in response to increasing radiative forcing – the specific equilibrium climate sensitivity S – is depending on background climate. We here present paleo-data based evidence on the state-dependency of S, by using CO2 proxy data together with 3-D ice-sheet model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity was in similar approaches not accounted for due to previously more simplistic approximations of land-ice albedo radiative forcing being a linear function of sea level change. Important for the non-linearity between land-ice albedo and sea level is a latitudinal dependency in ice sheet area changes.In our setup, in which the radiative forcing of CO2 and of the land-ice albedo (LI) is combined, we find a state-dependency in the calculated specific equilibrium climate sensitivity S[CO2,LI] for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods S[CO2,LI] is on average ∼ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6–5 Myr BP) the CO2 data uncertainties prevents a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land-ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP) the specific equilibrium climate sensitivity S[CO2,LI] was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state-change in the climate system with the wide appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land-ice albedo radiative forcing, which is important for similar paleo data-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the necessary corrections for other slow feedbacks are in detail unknown and the still existing uncertainties in the ice sheet simulations and global temperature reconstructions are large.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-16
    Description: During the early to mid-Miocene, benthic δ18O records indicate large ice volume fluctuations of the Antarctic ice sheet (AIS) on multiple timescales. Hitherto, research has mainly focused on how CO2 and insolation changes control an equilibrated AIS. However, transient AIS dynamics remain largely unexplored. Here, we study Miocene AIS variability, using an ice sheet-shelf model forced by climate model output with various CO2 levels and orbital conditions. Besides equilibrium simulations, we conduct transient experiments, gradually changing the forcing climate state over time. We show that transient AIS variability is substantially smaller than equilibrium differences. This reduces the contribution of the AIS to δ18O fluctuations by more than two thirds on a 40-kyr timescale, hence requiring a larger contribution by deep-sea-temperature variability. The growth rates are much slower than the decay rates, which ensures variability around a preferred small state. Finally, if the bedrock topography enlarges the West Antarctic land surface, AIS self-sustenance increases. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-01
    Print ISSN: 2572-4517
    Electronic ISSN: 2572-4525
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  EPIC3XI. International Conference on Paleoceanography (ICP12), 2016-08-27-2016-09-02
    Publication Date: 2016-09-06
    Description: It is a still open question how equilibrium warming in response to increasing radiative forcing (specific equilibrium climate sensitivity S) is depending on background climate. We here bring palaeodata-based evidence on the state dependency of S by using CO2 proxy data together with 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land-ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. In our setup, in which the radiative forcing of CO2 and of the land-ice albedo (LI) is combined (dR_[CO2,LI]), we find a state dependency in the calculated specific equilibrium climate sensitivity S_[CO2,LI] for most of the Pleistocene (last 2.1 Myr). In the Pliocene part (2.6–5 Myr BP) the CO2 data uncertainties prevents a well-supported calculation for S_[CO2,LI], but our analysis suggests that during times without large land-ice area in the northern hemisphere (before 2.82 Myr BP) the specific equilibrium climate sensitivity S_[CO2,LI] was smaller than during interglacials of the Pleistocene. If we develop for S an equation as a function of dR_[CO2,LI] we find S_[CO2,LI] in interglacials to be 2–2.7x larger than during glacial maxima, potentially indicating that equilibrium warming for CO2 doubling might be in the upper range of results compiled in the IPCC AR4.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...