ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-10-01
    Print ISSN: 1059-9495
    Electronic ISSN: 1544-1024
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Marshall Space Flight Center (MSFC) has developed a new technique that can enhance cryogenic fracture toughness and reduce the statistical spread of toughness values in alloy 2195. This aging treatment can control the location and size of strengthening precipitate T1, making improvements possible in cryogenic fracture toughness (CFT) and fracture toughness ratio (FTR). At the start of this program, design of experiments (DOE) ingot No. 10 was used as a baseline for aging process development and optimization. The new aging treatment was found to be very effective, improving CFT by approximately 15 to 20 percent for DOE ingot No. 10. To further evaluate the repeatability and effectiveness of this new treatment, the investigators selected and tested three more lots of alloy 2195, using 1.75-in-thick gauge plates with FTR values ranging from 0.85 to 1.07. The new aging treatment effectively enhanced CFT and FTR values for all three lots. In one instance, the material was considered rejectable because it did not meet the minimum FTR value (1.0) of the super lightweight tank (SLWT). The new aging treatment improved its FTR from 0.85 to 1.01, making this material acceptable for use in the SLWT.
    Keywords: Metallic Materials
    Type: NASA-TM-108524 , NAS 1.15:108524
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Saturn V S-IC electron beam welding system
    Keywords: MACHINE ELEMENTS AND PROCESSES
    Type: NASA-TM-X-57109 , R-ME-IN-65-4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-10
    Description: Marshall Space Flight Center has developed a two-step (TS) artificial aging technique that can significantly enhance cryogenic fracture toughness and resistance to stress corrosion cracking (SCC) in aluminum-copper-lithium alloy 2195. The new TS aging treatment consists of exposures at 132 C (270 F)/20 hr + 138 C (280 F)/42 hr, which can be readily applied to flight hardware production. TS aging achieves the same yield strength levels as conventional aging, while providing much improved ductility in the short transverse direction. After TS aging, five previously rejected lots of alloy 2195 (lots 950M029B, 960M030F, 960M030J, 960M030K, and 960M030L) passed simulated service testing for use in the super lightweight tank program. Each lot exhibited higher fracture toughness at cryogenic temperature than at ambient temperature. Their SCC resistance was also enhanced. All SCC specimens passed the minimum 10-day requirement in 3.5-percent sodium chloride alternate immersion at a stress of 45 ksi. The SCC lives ranged from 57 to 83 days, with an average of 70 days.
    Keywords: Metals and Metallic Materials
    Type: NASA/TM-2002-211547 , M-1042 , NAS 1.15:211547
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: In 1996, Marshall Space Flight Center developed a multistep heating rate-controlled (MSRC) aging technique that significantly enhanced cryogenic fracture toughness (CFT) and reduced the statistical spread of fracture toughness values in alloy 2195 by controlling the location and size of strengthening precipitate T1. However, it could not be readily applied to flight-related hardware production, primarily because large-scale production furnaces are unable to maintain a heating rate of 0.6 C (1 F)/hr. In August 1996, a new program was initiated to determine whether the MSRC aging treatment could be further modified to facilitate its implementation to flight hardware production. It was successfully redesigned into a simplified two-step aging treatment consisting of 132 C (270 F)/20 hr + 138 C (280 F)/40 hr. Results indicated that two-step aging can achieve the same yield strength levels as those produced by conventional aging while providing greatly improved ductility. Two-step aging proved to be very effective at enhancing CFT, enabling previously rejected materials to meet simulated service requirements. Cryogenic properties are improved by controlling T1 nucleation and growth so that they are promoted in the matrix and suppressed in the subgrain boundaries.
    Keywords: Metals and Metallic Materials
    Type: NASA/TM-2002-211546 , M-1041 , NAS 1.15:211546
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...