ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-157X
    Keywords: Aftershocks distribution ; Apennines ; earthquake location ; propagation models ; seismic sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present some preliminary results obtained from thejoined analysis of the data collected by the permanentand the temporary networks operating in the area ofthe earthquake sequence that followed (andanticipated) the 26 September, Central Italy, mainshocks. In particular, these earthquake data haveallowed us to determine a well constrainedwave-velocity model (both P and S) with stationcorrections which demonstrated to produce robusthypocentral locations. These velocity modelswith station corrections have been used forre-locating the whole September 1997–July 1998subset of data of the permanent network, and theprevious background seismicity, starting from May1996. The focal mechanisms of the largest events werealso obtained from an analysis of the first-motionpolarities.Our results indicate that 1) the seismic activityaligns on a SE-NW trend for a total length of about50 km of extension; 2) the focal depth of theseevents is restricted to the range 0–9 km; 3) mostevents can be related to sub-parallel SW dipping faultplanes; 4) focal mechanisms of the largest shocks(ML 〉 4) show a coherent behaviour, withnormal fault solution on SSE-NNW striking, SW dippingplanes; 5) the space-time evolution of the activitydisplays a discontinuous mode of energy release, withdifferent episodes of activation and an apparentclustering of aftershocks at the edges of the areaswhich presumably ruptured in the main shocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-157X
    Keywords: Apennines ; local earthquake tomography ; seismicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present some preliminary images of the 3-D P-wavevelocity model and of the relocated seismicityobtained from the data collected by the GNDT-SSNtemporary network installed in the epicentral area ofthe earthquake sequence that followed the 26September, 1997, Central Italy main shock(Mw = 6.0). This network consisted of a total of 15stations, was deployed in the southern part of thearea affected by the earthquake sequence and operatedfor a total of 17 days starting on 10/18/97.Our results indicate that 1) the P-velocity structuredisplays a pattern of lateral variations consistentwith the general NW-SE trend of the Apennines in thearea; 2) the aftershock foci distribute, in thesouthern part of the sequence, on distinct and welldefined SW dipping planes which surface intersectionsmatch previously recognized active normal faults; 3)a distinct zone of aftershock quiescence is observedin correspondence of the 10/12 (ML = 5.3) and10/14/97 (ML = 5.7) hypocenters near Sellano; 4)the seismicity at the southern end is very shallow andit is unclear the relationship between the 1997 andthe 1979 Norcia sequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Natural hazards 19 (1999), S. 123-138 
    ISSN: 1573-0840
    Keywords: cross-correlation ; similarity ; cluster ; earthquake family ; doublet ; multiplet ; western alps
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography , Geosciences
    Notes: Abstract the temporal and spatial evolution of seismicity, a simple cross-correlation technique was applied to a waveform data set of western Alps earthquakes. A selection of events recorded by a reference station of the regional seismic network of North-Western Italy (IGG network) within a particular S-P range was used. The adopted method was tested on 380 events recorded in 1995, allowing for the definition of the critical parameters for an optimal identification of earthquake families. The comparison of the individuated families definition with the relevant epicentres map confirms that, on small scales, the epicentre positions of microearthquakes located by a regional network could be strongly influenced by location errors. The analysis was extended to a more complete data set of 2653 events; 1171 of them were grouped in families. The results demonstrated that our single station method is able to discriminate between closely spaced families on the basis of the position and of the radiation properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-06-11
    Description: In this study, microseism recordings from a near coast seismic station and concurrent significant sea wave heights ( $H_{\frac{1}{3}}$ ) are analysed to calibrate an empirical relation for predicting sea wave height in the Ligurian Sea. The study stems from the investigation of the damaging sea storms occurred in the Ligurian Sea between 2008 October and November. Analysing data collected in this time frame allows identification of two types of microseism signal, one associated to the local sea wave motion and one attributable to a remote source area. The former is dominated by frequencies greater than 0.2 Hz and the latter by frequencies between 0.07 and 0.14 Hz. Moreover, comparison of microseism spectrogram and significant sea wave heights reveals a strong correlation in that the spectral energy content of microseism results proportional to the sea wave height observed in the same time window. Hence, an extended data set including also observations from January to December 2011 is used to calibrate an empirical predictive relation for sea wave height whose functional form is a modified version of the classical definition of $H_{\frac{1}{3}}$ . By means of a Markov chain Monte Carlo algorithm we set up a procedure to investigate the inverse problem and to find a set of parameter values for predicting sea wave heights from microseism.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-02
    Description: The impact on probabilistic ground-motion hazard of different definitions of the horizontal component of ground shaking is examined. The scope is to highlight how such a minor detail within the complex computation chain of a probabilistic seismic-hazard assessment can play a crucial role on final results. This is achieved by comparing hazard maps produced for Italy considering different definitions of the ground-motion component at different spectral periods. In our exercise, special attention is paid to the treatment of the aleatory variability of ground motion (sigma) when one switches from one metric to another. The results show that differences in the definition of the horizontal component could imply differences in the hazard results as large as 40%. Online Material: Color maps of geographical distributions of hazard value ratios.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-05
    Description: In this study we derive a spectral model describing the source, propagation and site characteristics of S waves recorded in central Italy. To this end, we compile and analyse a high-quality data set composed of more than 9000 acceleration and velocity waveforms in the local magnitude ( M l ) range 3.0–5.8 recorded at epicentral distances smaller than 120 km. The data set spans the time period from 2008 January 1 to 2013 May 31, and includes also the 2009 L'Aquila (moment magnitude M w 6.1, M l = 5.8) sequence. This data set is suitable for the application of data-driven approaches to derive the empirical functions for source, attenuation and site terms. Therefore, we apply a non-parametric inversion scheme to the acceleration Fourier spectra of the S waves of 261 earthquakes recorded at 129 stations. In a second step, with the aim of defining spectral models suitable for the implementation in numerical simulation codes, we represent the obtained non-parametric source and propagation terms by fitting standard parametric models. The frequency-dependent attenuation with distance r shows a complex trend that we parametrize in terms of geometrical spreading, anelastic attenuation and high-frequency decay parameter k. The geometrical spreading term is described by a piecewise linear model with crossover distances at 10 and 70 km: in the first segment, the spectral ordinates decay as 〈 tex – mathid = " IM 0001" 〉 r – 1.01 while in the second as 〈 tex – mathid = " IM 0002" 〉 r – 1.68 . Beyond 70 km, the attenuation decreases and the spectral amplitude attenuate as 〈 tex – mathid = " IM 0003" 〉 r – 0.64 . The quality factor Q ( f ) and the high-frequency attenuation parameter k , are 〈 tex – mathid = " IM 0004" 〉 Q ( f ) = 290 f 0.16 and k = 0.012 s, respectively, the latter being applied only for frequencies higher than 10 Hz. The source spectra are well described by 2 models, from which seismic moment and stress drops of 231 earthquakes are estimated. We calibrate a new regional relationship between seismic moment and local magnitude that improves the existing ones and extends the validity range to 3.0–5.8. We find a significant stress drop increase with seismic moment for events with M w larger than 3.75, with so-called scaling parameter  close to 1.5. We also observe that the overall offset of the stress-drop scaling is controlled by earthquake depth. We evaluate the performance of the proposed parametric models through the residual analysis of the Fourier spectra in the frequency range 0.5–25 Hz. The results show that the considered stress-drop scaling with magnitude and depth reduces, on average, the standard deviation by 18 per cent with respect to a constant stress-drop model. The overall quality of fit (standard deviation between 0.20 and 0.27, in the frequency range 1–20 Hz) indicates that the spectral model calibrated in this study can be used to predict ground motion in the L'Aquila region.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-12-06
    Description: In this study we derive a spectral model describing the source, propagation and site characteristics of S waves recorded in central Italy. To this end, we compile and analyse a high-quality data set composed of more than 9000 acceleration and velocity waveforms in the local magnitude ( M l ) range 3.0–5.8 recorded at epicentral distances smaller than 120 km. The data set spans the time period from 2008 January 1 to 2013 May 31, and includes also the 2009 L'Aquila (moment magnitude M w 6.1, M l = 5.8) sequence. This data set is suitable for the application of data-driven approaches to derive the empirical functions for source, attenuation and site terms. Therefore, we apply a non-parametric inversion scheme to the acceleration Fourier spectra of the S waves of 261 earthquakes recorded at 129 stations. In a second step, with the aim of defining spectral models suitable for the implementation in numerical simulation codes, we represent the obtained non-parametric source and propagation terms by fitting standard parametric models. The frequency-dependent attenuation with distance r shows a complex trend that we parametrize in terms of geometrical spreading, anelastic attenuation and high-frequency decay parameter k. The geometrical spreading term is described by a piecewise linear model with crossover distances at 10 and 70 km: in the first segment, the spectral ordinates decay as 〈 tex – mathid = " IM 0001" 〉 r – 1.01 while in the second as 〈 tex – mathid = " IM 0002" 〉 r – 1.68 . Beyond 70 km, the attenuation decreases and the spectral amplitude attenuate as 〈 tex – mathid = " IM 0003" 〉 r – 0.64 . The quality factor Q ( f ) and the high-frequency attenuation parameter k , are 〈 tex – mathid = " IM 0004" 〉 Q ( f ) = 290 f 0.16 and k = 0.012 s, respectively, the latter being applied only for frequencies higher than 10 Hz. The source spectra are well described by 2 models, from which seismic moment and stress drops of 231 earthquakes are estimated. We calibrate a new regional relationship between seismic moment and local magnitude that improves the existing ones and extends the validity range to 3.0–5.8. We find a significant stress drop increase with seismic moment for events with M w larger than 3.75, with so-called scaling parameter  close to 1.5. We also observe that the overall offset of the stress-drop scaling is controlled by earthquake depth. We evaluate the performance of the proposed parametric models through the residual analysis of the Fourier spectra in the frequency range 0.5–25 Hz. The results show that the considered stress-drop scaling with magnitude and depth reduces, on average, the standard deviation by 18 per cent with respect to a constant stress-drop model. The overall quality of fit (standard deviation between 0.20 and 0.27, in the frequency range 1–20 Hz) indicates that the spectral model calibrated in this study can be used to predict ground motion in the L'Aquila region.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉The compilation of reliable and complete seismic catalogs represents a fundamental issue for most studies in seismology. Nowadays, the availability of an ever‐increasing number of stations and, therefore, the huge amount of recordings to be processed and analyzed require a lot of effort in terms of man‐hours. In the present work, we present a fully automatic procedure for compiling seismic catalogs starting from continuous recordings. The procedure relies on a multistep algorithm that includes event detection tool, automatic 〈span〉P〈/span〉‐ and 〈span〉S〈/span〉‐phase picker, hypocenter locator, and magnitude and strong‐motion parameter calculator. This automatic procedure is applied for compiling seismic catalogs for two real‐world usage scenarios starting from the open‐access waveform database provided by European Integrated Data Archive. The first scenario concerns the monitoring of the seismicity of northwestern Italy; the second one concerns the analysis of the data recorded during the first month of the 2016 sequence in central Italy. The comparison between reference manually revised and automatic seismic catalogs points out negligible differences in terms of both 〈span〉P〈/span〉‐ and 〈span〉S〈/span〉‐phase pickings, hypocentral coordinates, and local magnitude values, thus showing the overall reliability of the procedure. The ability of the proposed automatic procedure in detecting and locating very low‐magnitude events is prominent to compile automatic catalogs characterized by a magnitude of completeness significantly lower than that of reference manual catalogs.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: 〈span〉〈div〉ABSTRACT〈/div〉The compilation of reliable and complete seismic catalogs represents a fundamental issue for most studies in seismology. Nowadays, the availability of an ever‐increasing number of stations and, therefore, the huge amount of recordings to be processed and analyzed require a lot of effort in terms of man‐hours. In the present work, we present a fully automatic procedure for compiling seismic catalogs starting from continuous recordings. The procedure relies on a multistep algorithm that includes event detection tool, automatic 〈span〉P〈/span〉‐ and 〈span〉S〈/span〉‐phase picker, hypocenter locator, and magnitude and strong‐motion parameter calculator. This automatic procedure is applied for compiling seismic catalogs for two real‐world usage scenarios starting from the open‐access waveform database provided by European Integrated Data Archive. The first scenario concerns the monitoring of the seismicity of northwestern Italy; the second one concerns the analysis of the data recorded during the first month of the 2016 sequence in central Italy. The comparison between reference manually revised and automatic seismic catalogs points out negligible differences in terms of both 〈span〉P〈/span〉‐ and 〈span〉S〈/span〉‐phase pickings, hypocentral coordinates, and local magnitude values, thus showing the overall reliability of the procedure. The ability of the proposed automatic procedure in detecting and locating very low‐magnitude events is prominent to compile automatic catalogs characterized by a magnitude of completeness significantly lower than that of reference manual catalogs.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-11-04
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...