ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2012-10-19
    Description: Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms within agricultural lands. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. In contrast to the other land-use models linking economy and biophysics, crops are aggregated as a representative product in calories and intensification for the representative crop is a non-linear function of chemical inputs. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-21
    Description: Interactions between food demand, biomass energy and forest preservation are driving both food prices and land-use changes, regionally and globally. This study presents a new model called Nexus Land-Use version 1.0 which describes these interactions through a generic representation of agricultural intensification mechanisms. The Nexus Land-Use model equations combine biophysics and economics into a single coherent framework to calculate crop yields, food prices, and resulting pasture and cropland areas within 12 regions inter-connected with each other by international trade. The representation of cropland and livestock production systems in each region relies on three components: (i) a biomass production function derived from the crop yield response function to inputs such as industrial fertilisers; (ii) a detailed representation of the livestock production system subdivided into an intensive and an extensive component, and (iii) a spatially explicit distribution of potential (maximal) crop yields prescribed from the Lund-Postdam-Jena global vegetation model for managed Land (LPJmL). The economic principles governing decisions about land-use and intensification are adapted from the Ricardian rent theory, assuming cost minimisation for farmers. The land-use modelling approach described in this paper entails several advantages. Firstly, it makes it possible to explore interactions among different types of biomass demand for food and animal feed, in a consistent approach, including indirect effects on land-use change resulting from international trade. Secondly, yield variations induced by the possible expansion of croplands on less suitable marginal lands are modelled by using regional land area distributions of potential yields, and a calculated boundary between intensive and extensive production. The model equations and parameter values are first described in details. Then, idealised scenarios exploring the impact of forest preservation policies or rising energy price on agricultural intensification are described, and their impacts on pasture and cropland areas are investigated.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-19
    Description: The central role of land-use change in the Earth System and its implications for food security, biodiversity and climate has spurred the development of global models that combine economical and agro-ecological drivers and constraints. With such a development of integrated approaches, evaluating the performance of global models of land-use against observed historical changes recorded by agricultural data becomes increasingly challenging. The Nexus Land-Use model is an example of land-use model integrating both biophysical and economical processes and constraints. This paper is an attempt to evaluate its ability to simulate historical agricultural land-use changes over 12 large but economically coherent regions of the world since 1961. The evaluation focuses on the intensification vs. extensification response of crop and livestock production in response to changes of socio-economic drivers over time, such as fertiliser price, population and diet. We examine how well the Nexus model can reproduce annual observation-based estimates of cropland vs. pasture areas from 1961 to 2006. Food trade, consumption of fertilisers and food price are also evaluated against historical data. Over the 12 regions considered, the total relative error on simulated cropland area is 2% yr−1 over 1980–2006. During the period 1961–2006, the error is larger (4% yr−1) due to an overestimation of the cropland area in China and Former Soviet Union over 1961–1980. Food prices tend to be underestimated while the performances of the trade module vary widely among regions (net imports are underestimated in Western countries at the expense of Brazil and Asia). Finally, a sensitivity analysis over a sample of input datasets provides some insights on the robustness of this evaluation.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...