ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-21
    Description: Mitochondrial topoisomerase I is a genetically distinct mitochondria-dedicated enzyme with a crucial but so far unknown role in the homeostasis of mitochondrial DNA metabolism. Here, we present data suggesting a negative regulatory function in mitochondrial transcription or transcript stability. Deficiency or depletion of mitochondrial topoisomerase I increased mitochondrial transcripts, whereas overexpression lowered mitochondrial transcripts, depleted respiratory complexes I, III and IV, decreased cell respiration and raised superoxide levels. Acute depletion of mitochondrial topoisomerase I triggered neither a nuclear mito-biogenic stress response nor compensatory topoisomerase IIβ upregulation, suggesting the concomitant increase in mitochondrial transcripts was due to release of a local inhibitory effect. Mitochondrial topoisomerase I was co-immunoprecipitated with mitochondrial RNA polymerase. It selectively accumulated and rapidly exchanged at a subset of nucleoids distinguished by the presence of newly synthesized RNA and/or mitochondrial RNA polymerase. The inactive Y559F-mutant behaved similarly without affecting mitochondrial transcripts. In conclusion, mitochondrial topoisomerase I dampens mitochondrial transcription and thereby alters respiratory capacity. The mechanism involves selective association of the active enzyme with transcriptionally active nucleoids and a direct interaction with mitochondrial RNA polymerase. The inhibitory role of topoisomerase I in mitochondrial transcription is strikingly different from the stimulatory role of topoisomerase I in nuclear transcription.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2011-05-24
    Description: Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane CH4 fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.76 ± 0.39 μg C m−2 s−1 (mean ± SE) with a median of 1.42 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4 % of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3 % of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed, which indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-11-17
    Description: Hydroelectric reservoirs bury significant amounts of organic carbon (OC) in their sediments. Many reservoirs are characterized by high sedimentation rates, low oxygen concentrations in bottom water, and a high share of terrestrially derived OC, and all of these factors have been linked to a high efficiency of OC burial. However, investigations of OC burial efficiency (OCBE, i.e. the ratio between OC buried and deposited) in reservoirs is limited to a few studies, none of which include spatially resolved analyses. In this study we determined the spatial variation in OCBE in a large tropical reservoir and related it to sediment characteristics. Our results show that the sediment accumulation rate explains up to 92 % of the spatial variability in OCBE, outweighing the effect of other variables, such as OC source and oxygen exposure time. OCBE at the pelagic sites varied from 48 to 86 % (mean 67 %) and decreased towards the dam. At the margins, OCBE was lower (9 to 17 %) due to the low sediment accumulation in shallow areas. Our data show that the variability in OCBE both along the rivers-dam and the margin-pelagic axes must be considered in whole-reservoir assessments. Combining these results with a spatially resolved assessment of sediment accumulation and OC burial in the studied reservoir, we estimated a whole-basin OC burial efficiency of 57 %. Being the first whole-basin assessment of OCBE in a reservoir, these results suggest that reservoirs may bury OC more efficiently than natural lakes.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-09-29
    Description: Greenhouse gas budgets quantified via land-surface eddy covariance (EC) flux sites differ significantly from those obtained via inverse modeling. A possible reason for the discrepancy between methods may be our gap in quantitative knowledge of methane (CH4) fluxes. In this study we carried out EC flux measurements during two intensive campaigns in summer 2008 to quantify methane flux from a hydropower reservoir and link its temporal variability to environmental driving forces: water temperature and pressure changes (atmospheric and due to changes in lake level). Methane fluxes were extremely high and highly variable, but consistently showed gas efflux from the lake when the wind was approaching the EC sensors across the open water, as confirmed by floating chamber flux measurements. The average flux was 3.8 ± 0.4 μg C m−2 s−1 (mean ± SE) with a median of 1.4 μg C m−2 s−1, which is quite high even compared to tropical reservoirs. Floating chamber fluxes from four selected days confirmed such high fluxes with 7.4 ± 1.3 μg C m−2 s−1. Fluxes increased exponentially with increasing temperatures, but were decreasing exponentially with increasing atmospheric and/or lake level pressure. A multiple regression using lake surface temperatures (0.1 m depth), temperature at depth (10 m deep in front of the dam), atmospheric pressure, and lake level was able to explain 35.4% of the overall variance. This best fit included each variable averaged over a 9-h moving window, plus the respective short-term residuals thereof. We estimate that an annual average of 3% of the particulate organic matter (POM) input via the river is sufficient to sustain these large CH4 fluxes. To compensate the global warming potential associated with the CH4 effluxes from this hydropower reservoir a 1.3 to 3.7 times larger terrestrial area with net carbon dioxide uptake is needed if a European-scale compilation of grasslands, croplands and forests is taken as reference. This indicates the potential relevance of temperate reservoirs and lakes in local and regional greenhouse gas budgets.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-06-01
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Geosciences , Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-02-01
    Print ISSN: 0022-1694
    Electronic ISSN: 1879-2707
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Univ. of Iceland, School of Engineering and Natural Sciences
    In:  [Talk] In: 14th Workshop on Physical Processes in Natural Waters, 28.06.-01.07.2010, Reykjavik, Iceland . Conference Proceedings / 14th Workshop on Physical Processes in Natural Waters, Reykjavik, Iceland, June 28 - July 1 2010 / Ed.: ; pp. 143-144 .
    Publication Date: 2012-02-23
    Description: Methane (CH4) is one of the most important greenhouse gases (IPCC, 2005). Lakes and reservoirs have been identified as important, but overlooked, sources to the global CH4 budget. CH4 emission pathways include dissolved gas exchange at the water surface, bubble transport (ebullition), and degassing at the turbines of a hydropower dam or further downstream (Soumis, et al., 2005). Ebullition is an extremely effective pathway as bubbles mostly bypass oxidation at the sediment surface or in the water column and directly emit CH4. The stochastic nature of ebullition, however, makes it incredibly difficult to estimate; thus the aim of this study was to compare the traditional funnel method for measuring ebullition with a mass balance system analysis, atmospheric CH4 measurements, and hydroacoustic surveying. A yearlong CH4 survey was conducted at 2.5 km2 Lake Wohlen, a 90-yr-old run-of-river hydropower reservoir along the Aare River downstream of Bern, Switzerland. Dissolved CH4 ([CH4]d) profiles were measured monthly at the river inflow and at the dam. Sediment surface and water surface CH4 diffusion and CH4 oxidation in the water column were measured and/or calculated. Gas trap funnels measured ebullition near the seabed; drifting chambers captured total surface CH4 emissions. A bubble dissolution model was used to assess fractions of CH4 dissolving into the water and emitted to the atmosphere from bubbles. Complete method details in DelSontro, et al. (2010). Drifting chamber campaigns were accompanied by hydroacoustic surveys using an echosounder (Simrad EK60, 120 kHz). Eddy covariance measurements of atmospheric CH4 fluxes (EC/CH4) over the lake were made in conjunction with a cavity ringdown laser spectrometer (Los Gatos Research DLT-100). For details, see Eugster and Plüss (in press). It was discovered that [CH4]d increased by an order of magnitude along the reservoir and the [CH4]d accumulation was exponentially correlated with water temperature (T) (Figure 1a). The bubble dissolution model predicted that 70% of bubble-conveyed CH4 would reach the atmosphere, resulting in ~470 mg CH4 m-2 d-1 emitted to the atmosphere at T=17°C. Sediment and surface diffusions did not vary much with season and played a much lesser role in CH4 emissions than ebullition. Methane oxidation was negligible in this oxic reservoir with an average 2-day residence time. A system analysis was developed to better constrain the stochastic pattern of ebullition. Assuming no ebullition in winter (T〈10°C), sediment diffusion was estimated based on [CH4]d accumulation in water at a given flow rate. The [CH4]d accumulation and T regression was used to estimate [CH4]d from dissolving bubbles at various T regimes which, at T=17°C, agreed well with funnel measurements (140 and 220 mg CH4 m-2 d-1, respectively). Using the bubble dissolution model results, sediment ebullition and atmospheric emissions were calculated and agreed well with empirical results. Considering all CH4 dissolved into the water from rising bubbles will either degas at the turbines or further downstream, Lake Wohlen thus emits ~156 mg CH4 m-2 d-1 on average throughout the year (140 tons/yr; Figure 1b), the highest recorded for a temperate reservoir to date (Soumis, et al., 2005) and of which ~80% is from ebullition. Drifting chambers captured emissions (mean, 855 mg CH4 m-2 d-1) much higher than those estimated with the system analysis at 17°C, but chambers were deployed in a highly active ebullition area. The chamber emissions agreed, however, with the peak CH4 emissions measured by EC/CH4 in the same region and are comparable to emissions estimated via hydroacoustics. These findings further highlight the importance in a potentially warming climate of (1) temperature-correlated CH4 ebullition emissions from temperate water bodies, and (2) these promising techniques for quantifying them.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...