ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-04-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-07
    Description: In Marchenko imaging, wavefields are retrieved at specified focal points in the subsurface through an iterative scheme derived from the multidimensional Marchenko equation. The method requires seismic-reflection data at the earth's surface (after free-surface multiple elimination) and an estimate of the direct wavefield from the surface to each focal point, which can be computed, for instance, in a macrovelocity model. In the first iteration, the direct wavefield is crosscorrelated with the reflection data. This operation is identical to inverse-wavefield extrapolation as is applied commonly in various imaging schemes, for instance, in reverse time migration (RTM). At each succeeding iteration, the result of the previous iteration is truncated in time and crosscorrelated with the reflection data again. To obtain a seismic image, a multidimensional deconvolution-based imaging condition can be applied to the retrieved wavefields. By this approach, both primary reflections and internal multiples contribute to the construction of the image. Alternatively, a crosscorrelation-based imaging condition can be used in which only the primary reflections are imaged and the contributions of internal multiples are subtracted. The latter strategy offers more flexibility because the subtraction of redatumed internal multiples can be implemented adaptively. Through this approach, the artifacts from internal multiples can be removed effectively from a conventional RTM image.
    Print ISSN: 1070-485X
    Electronic ISSN: 1938-3789
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-01-21
    Description: We determined that the electromagnetic vertical transverse isotropic response in a layered earth can be obtained by solving two equivalent scalar equations, which were for the vertical electric field and for the vertical magnetic field, involving only a scalar global reflection coefficient. Besides the complete derivation of the full electromagnetic response, we also developed the corresponding computer code called EMmod, which models the full electromagnetic fields including internal multiples in the frequency-wavenumber domain and obtains the frequency-space domain solutions through a Hankel transformation by computing the Hankel integral using a 61-point Gauss-Kronrod integration routine. The code is able to model the 3D electromagnetic field in a 1D earth for diffusive methods such as controlled source electromagnetics as well as for wave methods such as ground penetrating radar. The user has complete freedom to place the source and the receivers in any layer. The modeling is illustrated with three examples, which aim to present the different capabilities of EMmod, while assessing its correctness.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-03-01
    Description: Controlled-source electromagnetics (CSEM) has been used as a derisking tool in the hydrocarbon exploration industry. We apply the concept of synthetic aperture to the low-frequency electromagnetic field in CSEM. Synthetic aperture sources have been used in radar imaging for many years. Using the synthetic aperture concept, big synthetic sources can be constructed by adding the response to small sources (building blocks) in different ways, and consequently, big sources with different radiation patterns can be created. We show that the detectability of hydrocarbons is significantly enhanced by applying synthetic aperture to CSEM data. More challenging targets such as deep reservoirs (4 km below sea floor) can be detected. The synthetic aperture technique also increases the sensitivity of the field to subsurface targets in the towing streamer acquisition. We also show that a pseudovertical source (orthogonally distributed dipole pairs) can be constructed synthetically, and that the detection capability of this pseudovertical source is increased by applying field steering. The synthetic aperture concept opens a new line of research in CSEM, with the freedom to design suitable synthetic aperture sources for a given purpose.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-07-01
    Description: Understanding the seismoelectric interface response is important for developing seismoelectric field methods for oil exploration and environmental/engineering geophysics. The existing seismoelectric theory has never been validated systematically by controlled experiments. We have designed and developed an experimental setup in which acoustic-to-electromagnetic wave conversions at interfaces are measured. An acoustic source emits a pressure wave that impinges upon a porous sample. The reflected electric-wave potential is recorded by a wire electrode. We have also developed a full-waveform electrokinetic theoretical model based on the Sommerfeld approach and have compared it with measurements at positions perpendicular and parallel to the fluid/porous-medium interface. We performed experiments at several salinities. For 10-3 and 10-2 M sodium chloride (NaCl) solutions, both waveforms and amplitudes agree. For 10-4 M NaCl, however, amplitude deviations occur. We found that a single amplitude field scaling factor describes these discrepancies. We also checked the repeatability of experiments. The amplitudes are constant for the duration of an experiment (1–4 hours) but decrease on longer time scales (~24 hours). However, the waveforms and spatial amplitude pattern of the electric wavefield are preserved over time. Our results validate electrokinetic theory for the seismic-to-electromagnetic-wave conversion at interfaces for subsurface exploration purposes.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-10-08
    Description: Recent work on the Marchenko equation has shown that the scalar 3-D Green's function for a virtual source in the subsurface can be retrieved from the single-sided reflection response at the surface and an estimate of the direct arrival. Here, we discuss the first steps towards extending this result to multicomponent data. After introducing a unified multicomponent 3-D Green's function representation, we analyse its 1-D version for elastodynamic waves in more detail. It follows that the main additional requirement is that the multicomponent direct arrival, needed to initiate the iterative solution of the Marchenko equation, includes the forward-scattered field. Under this and other conditions, the multicomponent Green's function can be retrieved from single-sided reflection data, and this is demonstrated with a 1-D numerical example.
    Keywords: Express Letters
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-11-02
    Description: Passive interferometry technology is based on the relation between the reflection and the transmission responses of the subsurface. The transmission response can be received at surface in the presence of the ambient noise source in the subsurface with the cross-correlation (CC) or multidimensional deconvolution methods. We investigate the feasibility of electromagnetic (EM) wave passive interferometry with CC method. We design a 2-D finite-difference time domain (FDTD) algorithm to simulate the long-duration ground penetrating radar (GPR) measurements with random distribution of passive EM sources. The noise sources have random duration time, waveform and spatial distribution. We test the FDTD GPR passive interferometry code with above source characteristics and apply the method to light non-aqueous phase liquid (LNAPL) monitoring. Based on the model simulation data, by using common midpoint velocity analysis and normal move out correction to process the interferometry retrieve record, we can accurately obtain the dynamic changing characteristics of the target's permittivity. The LNAPL dynamic leakage model can be imaged as well. The synthetic results demonstrate that the GPR passive interferometry is feasible in subsurface LNAPL monitoring. Our work provides a foundation for a passive interferometry field application using GPR.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉We have derived a scheme for retrieving the primary reflections from the acoustic surface-reflection response by eliminating the free-surface and internal multiple reflections in one step. This scheme does not require model information and adaptive subtraction. It consists only of the reflection response as a correlation and convolution operator that acts on an intermediate wavefield from which we compute and capture the primary reflections. For each time instant, we keep one value for each source-receiver pair and store it in the new data set. The resulting data set contains only primary reflections, and from this data set, a better velocity model can be built than from the original data set. A conventional migration scheme can then be used to compute an artifact-free image of the medium. We evaluated the success of the method with a 2D numerical example. The method can have a wide range of applications in 3D strongly scattering media that are accessible from one side only.〈/span〉
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Society of Exploration Geophysicists (SEG)
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉We have derived an improved reverse time migration (RTM) scheme to image the medium without artifacts arising from internal multiple reflections. This is based on a revised implementation of Marchenko redatuming using a new time-truncation operator. Because of the new truncation operator, we can use the time-reversed version of the standard wavefield-extrapolation operator as initial estimate for retrieving the upgoing focusing function. Then, the retrieved upgoing focusing function can be used to directly image the medium by correlating it with the standard wavefield-extrapolation operator. This imaging scheme can be seen as an artifact-free RTM scheme with two terms. The first term gives the conventional RTM image with the wrong amplitude and artifacts due to internal multiple reflections. The second term gives a correction image that can be used to correct the amplitude and remove artifacts in the image generated by the first term. We evaluated the success of the method with a 2D numerical example.〈/span〉
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-05-14
    Description: We study the accuracy and numerical stability of three eigenvector sets for modelling the coupled poroelastic and electromagnetic layered-Earth response. We use a known eigenvector set, its flux-normalized version and a newly derived flux-normalized set. The new set is chosen such that the system is properly uncoupled when the coupling between the poroelastic and electromagnetic fields vanishes. We carry out two different numerical stability tests: the first test focuses on the internal system, eigenvector and eigenvalue consistency; the second test investigates the stability and preciseness of the flux-normalized systems by looking at identity relations. We find that the known set shows the largest deviation for both tests, whereas the new set performs best. In two additional numerical modelling experiments, these numerical inaccuracies are shown to generate numerical noise levels comparable to small signals, such as signals coming from the important interface conversion responses, especially when the coupling coefficient is small. When coupling vanishes completely, the known set does not produce proper results. The new set produces numerically stable and accurate results in all situations. We therefore strongly recommend to use this newly derived set for future layered-Earth seismo-electromagnetic modelling experiments.
    Keywords: Marine Geosciences and Applied Geophysics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...