ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-0654
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The primary objective of an agriculture water management system is to provide crop needs to sustain high yields. Another objective of equal or greater importance in some regions is to reduce agriculture impacts on surface and groundwater quality. Kandil et al. (1992) modified the water management model DRAINMOD to predict soil salinity as affected by irrigation water quality and drainage system design. The objectives of this study are to incorporate an algorithm to quantify the effects of stresses due to soil salinity on crop yields and to demonstrate the applications of the model. DRAINMOD-S, is capable of predicting the long-term effects of different irrigation and drainage practices on crop yields. The overall crop function in the model includes the effects of stresses caused by excessive soil water conditions (waterlogging), soil water-deficits, salinity, and planting delays. Three irrigation strategies and six drain spacings were considered for all crops. In the first irrigation strategy, the irrigation amounts were equal to evapotranspiration requirements by the crops, with the addition of a 10 cm depth of water for leaching applied during each growing season. In the second strategy, the leaching depth (10 cm) was applied before the growing season. In the third strategy, a leaching depth of 15 cm was applied before the growing season for each crop. Another strategy (4th) with more leaching was considered for bean which is the crop most sensitive to salinity. In the fourth strategy, 14 days intervals were used instead of 7 and leaching irrigations were applied: 15 cm before the growing season and 10 cm at the middle of the growing season for bean. The objective function for these simulations was crop yield. Soil water conditions and soil salinity were continuously simulated for a crop rotation of bean, cotton, maize, soybean, and wheat over a 19 years period. Yields of individual crops were predicted for each growing season. Results showed that the third irrigation strategy resulted in the highest yields for cotton, maize, soybean and wheat. Highest yields for bean were obtained by the fourth irrigation strategy. Results are also presented on the effects of drain depth and spacing on yields. DRAINMOD-S is written in Fortran and requires a PC with math-coprocessor. It was concluded that DRAINMOD-S is a useful tool for design and evaluation of irrigation and drainage systems in irrigated arid lands.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0654
    Keywords: drainage ; controlled drainage ; DRAINMOD ; water table management ; model ; nitrogen ; phosphorus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The design and management of drainage systems should consider impacts on drainage water quality and receiving streams, as well as on agricultural productivity. Two simulation models that are being developed to predict these impacts are briefly described. DRAINMOD-N uses hydrologic predictions by DRAINMOD, including daily soil water fluxes, in numerical solutions to the advective-dispersive-reactive (ADR) equation to describe movement and fate of NO3-N in shallow water table soils. DRAINMOD- CREAMS links DRAINMOD hydrology with submodels in CREAMS to predict effects of drainage treatment and controlled drainage losses of sediment and agricultural chemicals via surface runoff. The models were applied to analyze effects of drainage intensity on a Portsmouth sandy loam in eastern North Carolina. Depending on surface depressional storage, agricultural production objectives could be satisfied with drain spacings of 40 m or less. Predicted effects of drainage design and management on NO3-N losses were substantial. Increasing drain spacing from 20 m to 40 m reduced predicted NO3-N losses by over 45% for both good and poor surface drainage. Controlled drainage further decreases NO3-N losses. For example, predicted average annual NO3-N losses for a 30 m spacing were reduced 50% by controlled drainage. Splitting the application of nitrogen fertilizer, so that 100 kg/ha is applied at planting and 50 kg/ha is applied 37 days later, reduced average predicted NO3-N losses but by only 5 to 6%. This practice was more effective in years when heavy rainfall occurred directly after planting. In contrast to effects on NO3-N losses, reducing drainage intensity by increasing drain spacing or use of controlled drainage increased predicted losses of sediment and phosphorus (P). These losses were small for relatively flat conditions (0.2% slope), but may be large for even moderate slopes. For example, predicted sediment losses for a 2% slope exceeded 8000 kg/ha for a poorly drained condition (drain spacing of 100 m), but were reduced to 2100 kg/ha for a 20 m spacing. Agricultural production and water quality goals are sometimes in conflict. Our results indicate that simulation modeling can be used to examine the benefits of alternative designs and management strategies, from both production and environmental points-of-view. The utility of this methodology places additional emphasis on the need for field experiments to test the validity of the models over a range of soil, site and climatological conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Concentrations of ammonium- and nitrate-nitrogen of about 10,000 ppm moved from an untreated surface storage pond into the ground water in the sandy beds of the surficial sediments in northeastern North Carolina. This high concentration of nitrogen moved through the permeable sandy beds with the ground water above the Yorktown Formation aquiclude to the Chowan River with only minor dispersion normal to the hydraulic gradient. There was essentially no nitrogen movement into the Yorktown aquiclude even though solutions of 2,000 ppm (sol basis) had been in the overlying sediments for 2 to 3 years The possibility of the nitrogen moving into the deeper quifers used for community water supplies is very small. Only the shallow ground water above the Yorktown Formation in the immediate area will be contaminated with nitrogen because there is little lateral dispersion away from the flow of ground water toward the Chowan River.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : A paired watershed approach was utilized to study the effects of three water management regimes on storm event hydrology in three experimental watersheds in a drained loblolly pine (Pinus taeda L.) plantation in eastern North Carolina. The regimes were: (1) conventional drainage, (2) controlled drainage (CD) to reduce outflows during spring fish recruitment, and (3) controlled drainage to reduce outflows and conserve water during the growing season. Data from two pit-treatment years and three years of CD treatment with raised weirs at the watershed outlet are presented. CD treatment resulted in rises in water table elevations during the summer. But the rises were small and short-lived due to increased evapotranspiration (ET) rates as compared to the spring treatment with lower ET demands. CD treatment had no effect on water tables deeper than 1.3 m. CD treatments, however, significantly (α= 0.05) reduced the stoning outflows for all events, and peak outflow rates for most of the events depending upon the outlet weir level. In some events, flows did not occur at all in watersheds with CD. When event outflows occurred, duration of the event was sharply reduced because of reduced effective ditch depth. Water table depth at the start of an event influenced the effect of CD treatment on storm event hydrology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1975-01-01
    Print ISSN: 8755-1209
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-09
    Description: Paired watershed studies have historically been used to quantify hydrologic effects of land use and management practices by concurrently monitoring two neighboring watersheds (a control and a treatment) during the calibration (pre-treatment) and post-treatment periods. This study characterizes seasonal water table and flow response to rainfall during the calibration period and tests a change detection technique of moving sums of recursive residuals (MOSUM) to select calibration periods for each control-treatment watershed pair when the regression coefficients for daily water table elevation (WTE) were most stable to reduce regression model uncertainty. The control and treatment watersheds included 1–3 year intensively managed loblolly pine (Pinus taeda L.) with natural understory, same age loblolly pine intercropped with switchgrass (Panicum virgatum), 14–15 year thinned loblolly pine with natural understory (control), and switchgrass only. Although monitoring during the calibration period spanned 2009 to 2012, silvicultural operational practices that occurred during this period such as harvesting of existing stand and site preparation for pine and switchgrass establishment may have acted as external factors, potentially shifting hydrologic calibration relationships between control and treatment watersheds. Results indicated that MOSUM was able to detect significant changes in regression parameters for WTE due to silvicultural operations. This approach also minimized uncertainty of calibration relationships which could otherwise mask marginal treatment effects. All calibration relationships developed using this MOSUM method were quantifiable, strong, and consistent with Nash–Sutcliffe Efficiency (NSE) greater than 0.97 for WTE and NSE greater than 0.92 for daily flow, indicating its applicability for choosing calibration periods of paired watershed studies.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...