ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sjolte, Jesper; Sturm, Christophe; Adolphi, Florian; Vinther, Bo M; Werner, Martin; Lohmann, Gerrit; Muscheler, Raimund (2018): Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction. Climate of the Past, 14(8), 1179-1194, https://doi.org/10.5194/cp-14-1179-2018
    Publication Date: 2018-10-26
    Description: This dataset contains the time series (1241-1970 CE) of the first two principal components (PCs) of reconstructed winter (DJF) Sea Level Pressure (SLP) in the North Atlantic region (20-70N, 90W-40E). The SLP is reconstructed by matching modeled d18O patterns from an isotope enabled climate model simulation to the spatio-temporal variability of the winter d18O from Greenland ice cores, and extracting the model SLP from an ensemble of the best matching years. PC1 of reconstructed SLP corresponds to the North Atlantic Oscillation, and PC2 of reconstructed SLP corresponds to the Eastern Atlantic pattern. Both time series are normalized and centred. The sign of the data series is as shown in Figure 2 of Sjolte et al. (2018) with the corresponding spatial patterns shown in Supplementary Figure S3. For example, positive values of PC1 means positive NAO, while positive values of PC2 means negative pressure anomalies south of Greenland.
    Type: Dataset
    Format: text/tab-separated-values, 1460 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-09-10
    Description: The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450–1850 CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r = 0.29, p 〈 0.01) and centennial timescales (r = 0.6, p 〈 0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-13
    Description: The Antarctic temperature changes over the past millennia remain more uncertain than in many other continental regions. This has several origins: (1) the number of high-resolution ice cores is small, in particular on the East Antarctic plateau and in some coastal areas in East Antarctica; (2) the short and spatially sparse instrumental records limit the calibration period for reconstructions and the assessment of the methodologies; (3) the link between isotope records from ice cores and local climate is usually complex and dependent on the spatial scales and timescales investigated. Here, we use climate model results, pseudo-proxy experiments and data assimilation experiments to assess the potential for reconstructing the Antarctic temperature over the last 2 millennia based on a new database of stable oxygen isotopes in ice cores compiled in the frame- work of Antarctica2k (Stenni et al., 2017). The well-known covariance between δ18O and temperature is reproduced in the two isotope-enabled models used (ECHAM5/MPI-OM and ECHAM5-wiso), but is generally weak over the different Antarctic regions, limiting the skill of the reconstructions. Furthermore, the strength of the link displays large variations over the past millennium, further affecting the potential skill of temperature reconstructions based on statistical methods which rely on the assumption that the last decades are a good estimate for longer temperature reconstructions. Using a data assimilation technique allows, in theory, for changes in the δ18O–temperature link through time and space to be taken into account. Pseudoproxy experiments confirm the benefits of using data assimilation methods instead of statistical methods that provide reconstructions with unrealistic variances in some Antarctic subregions. They also confirm that the relatively weak link between both variables leads to a limited potential for reconstructing temperature based on δ18O. However, the reconstruction skill is higher and more uniform among reconstruction methods when the reconstruction target is the Antarctic as a whole rather than smaller Antarctic subregions. This consistency between the methods at the large scale is also observed when reconstructing temperature based on the real δ18O regional composites of Stenni et al. (2017). In this case, temperature reconstructions based on data assimilation confirm the long-term cooling over Antarctica during the last millennium, and the later onset of anthropogenic warming compared with the simulations without data assimilation, which is especially visible in West Antarctica. Data assimilation also allows for models and direct observations to be reconciled by reproducing the east–west contrast in the recent temperature trends. This recent warming pattern is likely mostly driven by internal variability given the large spread of individual Paleoclimate Modelling Intercomparison Project (PMIP)/Coupled Model Intercomparison Project (CMIP) model realizations in simulating it. As in the pseudoproxy framework, the reconstruction methods perform differently at the subregional scale, especially in terms of the variance of the time series produced. While the potential benefits of using a data assimilation method instead of a statistical method have been highlighted in a pseudoproxy framework, the instrumental series are too short to confirm this in a realistic setup.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-25
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Changes in solar activity have previously been proposed to cause decadal- to millennial-scale fluctuations in both the modern and Holocene climates1. Direct observational records of solar activity, such as sunspot numbers, exist for only the past few hundred years, so solar variability for earlier periods is typically reconstructed from measurements of cosmogenic radionuclides such as 10Be and 14C from ice cores and tree rings2, 3. Here we present a high-resolution 10Be record from the ice core collected from central Greenland by the Greenland Ice Core Project (GRIP). The record spans from 22,500 to 10,000 years ago, and is based on new and compiled data4, 5, 6. Using 14C records7, 8 to control for climate-related influences on 10Be deposition, we reconstruct centennial changes in solar activity. We find that during the Last Glacial Maximum, solar minima correlate with more negative δ18O values of ice and are accompanied by increased snow accumulation and sea-salt input over central Greenland. We suggest that solar minima could have induced changes in the stratosphere that favour the development of high-pressure blocking systems located to the south of Greenland, as has been found in observations and model simulations for recent climate9, 10. We conclude that the mechanism behind solar forcing of regional climate change may have been similar under both modern and Last Glacial Maximum climate conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-06
    Description: Analyzing seasonally resolved δ18O ice core data can aid the interpretation of the climate information in ice cores, providing also insights into factors governing the δ18O signal that cannot be deciphered by investigating the annual δ18O data only. However, the seasonal isotope signal has not yet to be investigated in northern Greenland, e.g. at the NEEM (North Greenland Eemian Ice Drilling) ice core drill site. Here we analyze seasonally resolved δ18O data from four shallow NEEM ice cores covering the last 150 years. Based on correlation analysis with observed temperature, we attribute about 70 % and 30 % of annual accumulation to summer and winter respectively. The NEEM summer δ18O signal correlates strongly with summer western Greenland coastal temperature and with the first principal component (PC1) of summer δ18O from multiple seasonally resolved ice cores from central/southern Greenland. However, there are no significant correlations between NEEM winter δ18O data and western Greenland coastal winter temperature, or southern/central Greenland winter δ18O PC1. The stronger correlation with temperature during summer and the dominance of summer precipitation skew the annual δ18O signal in NEEM. The strong footprint of temperature in NEEM summer δ18O record also suggests that the summer δ18O record, rather than the winter δ18O record, is a better temperature proxy at the NEEM site. Despite dominant signal of North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) in the central-southern ice cores data, both NAO and AMO exert weak influences on NEEM seasonal δ18O variations. The NEEM seasonal δ18O is found to be highly correlated with Baffin Bay sea ice concentration (SIC) in satellite observation period (1979–2004), suggesting a connection of the sea ice extent with δ18O at NEEM. NEEM winter δ18O significantly correlates with SIC even for the period prior to satellite observation (1901–1978). The NEEM winter δ18O may reflect sea ice variations of Baffin Bay rather than temperature itself. This study shows that seasonally resolved δ18O records, especially for sites with seasonal precipitation bias such as NEEM, provide a better understanding of how changing air temperature and circulation patterns are associated with the variability of the δ18O records.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-04-03
    Description: External forcings are known to impact atmospheric circulation. However, the analysis of the role of external forcings based on observational data is hampered due to the short observational period, and the sensitivity of atmospheric circulation to external forcings as well as persistence the effects are debated. A positive phase of the North Atlantic Oscillation (NAO) has been observed the following winter after tropical volcanic eruptions. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages has been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970 CE. Based on seasonally resolved Greenland ice core records and a 1200-year long simulation with an isotope enabled climate model, we reconstruct sea level pressure and temperature by matching the spatio-temporal variability of the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary and secondary modes of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show 5 winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over Northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On longer time scales we observe a similar response in circulation as for the 5-year time-lagged response. This is likely due to an increase in blocking frequency and an associated weakening of the subpolar gyre. The long-term response of temperature to solar minima shows cooling across Greenland, Iceland and Western Europe, resembling the cooling pattern during the Little Ice Age. While our results show a clear link between solar forcing and the secondary circulation patterns, we find no consistent relationship between solar forcing and NAO.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-08-15
    Description: The effect of external forcings on atmospheric circulation is debated. Due to the short observational period, the analysis of the role of external forcings is hampered, making it difficult to assess the sensitivity of atmospheric circulation to external forcings, as well as persistence of the effects. In observations, the average response to tropical volcanic eruptions is a positive North Atlantic Oscillation (NAO) during the following winter. However, past major tropical eruptions exceeding the magnitude of eruptions during the instrumental era could have had more lasting effects. Decadal NAO variability has been suggested to follow the 11-year solar cycle, and linkages have been made between grand solar minima and negative NAO. However, the solar link to NAO found by modeling studies is not unequivocally supported by reconstructions, and is not consistently present in observations for the 20th century. Here we present a reconstruction of atmospheric winter circulation for the North Atlantic region covering the period 1241–1970CE. Based on seasonally resolved Greenland ice core records and a 1200-year-long simulation with an isotope-enabled climate model, we reconstruct sea level pressure and temperature by matching the spatiotemporal variability in the modeled isotopic composition to that of the ice cores. This method allows us to capture the primary (NAO) and secondary mode (Eastern Atlantic Pattern) of atmospheric circulation in the North Atlantic region, while, contrary to previous reconstructions, preserving the amplitude of observed year-to-year atmospheric variability. Our results show five winters of positive NAO on average following major tropical volcanic eruptions, which is more persistent than previously suggested. In response to decadal minima of solar activity we find a high-pressure anomaly over northern Europe, while a reinforced opposite response in pressure emerges with a 5-year time lag. On centennial timescales we observe a similar response of circulation as for the 5-year time-lagged response, with a high-pressure anomaly across North America and south of Greenland. This response to solar forcing is correlated to the second mode of atmospheric circulation, the Eastern Atlantic Pattern. The response could be due to an increase in blocking frequency, possibly linked to a weakening of the subpolar gyre. The long-term anomalies of temperature during solar minima shows cooling across Greenland, Iceland and western Europe, resembling the cooling pattern during the Little Ice Age (1450–1850CE). While our results show significant correlation between solar forcing and the secondary circulation pattern on decadal (r=0.29, p〈0.01) and centennial timescales (r=0.6, p〈0.01), we find no consistent relationship between solar forcing and NAO. We conclude that solar and volcanic forcing impacts different modes of our reconstructed atmospheric circulation, which can aid in separating the regional effects of forcings and understanding the underlying mechanisms.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-12
    Description: This study investigates how variations in Arctic sea ice and sea surface conditions influence δ18O of present-day Arctic precipitation. This is done using the model isoCAM3, an isotope-equipped version of the National Center for Atmospheric Research Community Atmosphere Model version 3. Four sensitivity experiments and one control simulation are performed with prescribed sea surface temperature (SST) and sea ice. Each of the four experiments simulates the atmospheric and isotopic response to Arctic oceanic conditions for selected years after the beginning of the satellite era in 1979. Changes in sea ice extent and SSTs have different impacts in Greenland and the rest of the Arctic. The simulated changes in central Arctic sea ice do not influence δ18O of Greenland precipitation, only anomalies of Baffin Bay sea ice. However, this does not exclude the fact that simulations based on other sea ice and sea surface temperature distributions might yield changes in the δ18O of precipitation in Greenland. For the Arctic, δ18O of precipitation and water vapour is sensitive to local changes in sea ice and sea surface temperature and the changes in water vapour are surface based. Reduced sea ice extent yields more enriched isotope values, whereas increased sea ice extent yields more depleted isotope values. The distribution of the sea ice and sea surface conditions is found to be essential for the spatial distribution of the simulated changes in δ18O.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union (EGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-16
    Description: Understanding the transition of biosphere-atmosphere carbon exchange between glacial and interglacial climates can constrain uncertainties in its future projections. Using an individual-based dynamic vegetation model, we simulate vegetation distribution and terrestrial carbon cycling in past cold and warm climates and elucidate the forcing effects of temperature, precipitation, atmospheric CO2 concentration (pCO2), and landmass. Results are consistent with proxy reconstructions and reveal that the vegetation extent is mainly determined by temperature anomalies, especially in a cold climate, while precipitation forcing effects on global-scale vegetation patterns are marginal. The pCO2 change controls the global carbon balance with the fertilization effect of higher pCO2 linking to higher vegetation coverage, an enhanced terrestrial carbon sink, and increased terrestrial carbon storage. Our results indicate carbon transfer from ocean and permafrost/peat to the biosphere and atmosphere and highlight the importance of forest expansion as a driver of terrestrial ecosystem carbon stock from cold to warm climates. ©2019. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...