ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 271: 139-151.
    Publication Date: 2007-10-08
    Description: Almost every representative ancient building suffered from a fire during its history. Therefore, several limestones, sandstones, a gypsum, granites, tuffs, an orthogneiss and two marbles have been tested to analyse the effect of fire. Thermal expansion measurements up to 1000 {degrees}C reveal that every rock shows a specific expansion behaviour. Variations are caused by the single crystal thermal expansion properties of rock-forming minerals and by different damage processes. In silicate rocks, intragranular fracturing is the predominant damage phenomenon. Carbonate rocks show, at low temperatures, a behaviour mainly controlled by the anisotropic expansion of calcite. At higher temperatures, mineral reactions, such as decarbonatization, are directly evidenced by sudden jumps in thermal expansion curves. If water is present, a second stage of deterioration follows fire damage: the huge volume increase due to portlandite formation from decarbonized CaO causes severe scaling at the outermost surface of limestone when exposed to the environment. Small amounts of silicates in carbonate rocks may improve the stability of those rocks due to dicalciumsilicate formation. At high temperatures, an increase in the expansion coefficient may be explained by partial melting for some rock types. Phase changes (e.g. quartz) are monitored by a sudden increase in the expansion coefficient. Investigations on gypsum reveal that dehydration reactions reduce fire temperatures in the vicinity of gypsum rocks significantly. In general, all experiments show that samples are severely damaged after being subjected to fire. Real fire tests show that the penetration depth of heat and the associated damage types vary as a function of lithology. While for granites, cracks in feldspars predominate, the firing of limestone causes a scaling of the outermost layer. The investigations may lead to an improved assessment of natural building stones that have been damaged by fire. Implications can also be drawn for the recent use of facade panels made of natural building stones in case of a future fire.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-19
    Description: The atmosphere−ocean coupled Hurricane Weather Research and Forecast model (HWRF) developed at the National Centers for Environmental Prediction (NCEP) is used as an example to illustrate the impact of model vertical resolution on track forecasts of tropical cyclones. A number of HWRF forecasting experiments were carried out at different vertical...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-03-30
    Print ISSN: 0009-5893
    Electronic ISSN: 1612-1112
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2007-05-01
    Print ISSN: 0009-5893
    Electronic ISSN: 1612-1112
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-01
    Description: Previous thermomechanical modeling studies indicated that variations in the temperature and strength of the crystalline crust might be responsible for the juxtaposition of domains with thin-skinned and thick-skinned crustal deformation along strike the foreland of the central Andes. However, there is no evidence supporting this hypothesis from data-integrative models. We aim to derive the density structure of the lithosphere by means of integrated 3-D density modeling, in order to provide a new basis for discussions of compositional variations within the crust and for future thermal and rheological modeling studies. Therefore, we utilize available geological and geophysical data to obtain a structural and density model of the uppermost 200 km of the Earth. The derived model is consistent with the observed Bouguer gravity field. Our results indicate that the crystalline crust in northern Argentina can be represented by a lighter upper crust (2,800 kg/m 3 ) and a denser lower crust (3,100 kg/m 3 ). We find new evidence for high bulk crustal densities 〉3,000 kg/m 3 in the northern Pampia terrane. These could originate from subducted Puncoviscana wackes or pelites that ponded to the base of the crystalline crust in the late Proterozoic or indicate increasing bulk content of mafic material. The precise composition of the northern foreland crust, whether mafic or felsic, has significant implications for further thermomechanical models and the rheological behavior of the lithosphere. A detailed sensitivity analysis of the input parameters indicates that the model results are robust with respect to the given uncertainties of the input data. ©2018. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-04-28
    Print ISSN: 0943-0105
    Electronic ISSN: 1432-0495
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-03-01
    Description: This study critically assesses potential vorticity (PV) tendency equations used for analyzing atmospheric convective systems. A generic PV tendency format is presented to provide a framework for comparing PV tendency equations, which isolates the contributions to PV tendency from wind and mass field changes. These changes are separated into forcing terms (e.g., diabatic or friction) and flow adjustment and evolution terms (i.e., adiabatic motions). One PV tendency formulation analyzed separates PV tendency into terms representing PV advection and diabatic and frictional PV sources. In this form the PV advection is shown to exhibit large cancellation with the diabatic forcing term when used to analyze deep convective systems, which compromises the dynamical insight that the PV tendency analysis should provide. The isentropic PV substance tendency formulation of Haynes and McIntyre does not suffer from this cancellation problem. However, while the Haynes and McIntyre formulation may be appropriate for many convective system applications, there are likely to be some applications in which the formulation is difficult to apply or is not ideal. This study introduces a family of PV tendency equations in geometric coordinates that is free from the deficiencies of the above formulations. Simpler forms are complemented by more complex forms that expand the vorticity tendency term to offer additional insight into flow dynamics. The more complex forms provide insight similar to the influential Haynes and McIntyre isentropic formulation.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-12-01
    Description: Hurricane Rita made landfall near the Texas–Louisiana border in September 2005, causing major damage and disruption. As Rita approached the Gulf Coast, uncertainties in the storm’s track and intensity forecasts, combined with the aftermath of Hurricane Katrina, led to major evacuations along the Texas coast and significant traffic jams in the broader Houston area. This study investigates the societal impacts of Hurricane Rita and its forecasts through a face-to-face survey with 120 Texas Gulf Coast residents. The survey explored respondents’ evacuation decisions prior to Hurricane Rita, their perceptions of hurricane risk, and their use of and opinions on Hurricane Rita forecasts. The vast majority of respondents evacuated from Hurricane Rita, and more than half stated that Hurricane Katrina affected their evacuation decision. Although some respondents said that their primary reason for evacuating was local officials’ evacuation order, many reported using information about the hurricane to evaluate the risk it posed to them and their families. Despite the major traffic jams and the minor damage in many evacuated regions, most evacuees interviewed do not regret their decision to evacuate. The majority of respondents stated that they intend to evacuate for a future category 3 hurricane, but the majority would stay for a category 2 hurricane. Most respondents obtained forecasts from multiple sources and reported checking forecasts frequently. Despite the forecast uncertainties, the respondents had high confidence in and satisfaction with the forecasts of Rita provided by the National Hurricane Center.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-10
    Description: The Barents Sea and Kara Sea region as part of the European Arctic shelf, is geologically situated between the Proterozoic East-European Craton in the south and early Cenozoic passive margins in the north and the west. Proven and inferred hydrocarbon resources encouraged numerous industrial and academic studies in the last decades which brought along a wide spectrum of geological and geophysical data. By evaluating all available interpreted seismic refraction and reflection data, geological maps and previously published 3-D-models, we were able to develop a new lithosphere-scale 3-D-structural model for the greater Barents Sea and Kara Sea region. The sedimentary part of the model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian). Downwards, the 3-D-structural model is complemented by the top crystalline crust, the Moho and a newly calculated lithosphere-asthenosphere boundary (LAB). The thickness distribution of the main megasequences delineates five major subdomains differentiating the region (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian-Greenland Sea and the Eurasia Basin). The vertical resolution of five sedimentary megasequences allows comparing for the first time the subsidence history of these domains directly. Relating the sedimentary structures with the deeper crustal/lithospheric configuration sheds some light on possible causative basin forming mechanisms that we discuss. The newly calculated LAB deepens from the typically shallow oceanic domain in three major steps beneath the Barents and Kara shelves towards the West-Siberian Basin in the east. Thereby, we relate the shallow continental LAB and slow/hot mantle beneath the southwestern Barents Sea with the formation of deep Paleozoic/Mesozoic rift basins. Thinnest continental lithosphere is observed beneath Svalbard and the NW Barents Sea where no Mesozoic/early Cenozoic rifting has occurred but strongest Cenozoic uplift and volcanism since Miocene times. The East Barents Sea Basin is underlain by a LAB at moderate depths and a high-density anomaly in the lithospheric mantle which follows the basin geometry and a domain where the least amount of late Cenozoic uplift/erosion is observed. Strikingly, this high-density anomaly is not present beneath the adjacent southern Kara Sea. Both basins share a strong Mesozoic subsidence phase whereby the main subsidence phase is younger in the South Kara Sea Basin.
    Electronic ISSN: 1869-9537
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-02-12
    Description: We introduce a regional 3-D structural model of the Barents Sea and Kara Sea region which is the first to combine information on the sediments and the crystalline crust as well as the configuration of the lithospheric mantle. Therefore, we have integrated all available geological and geophysical data, including interpreted seismic refraction and reflection data, seismological data, geological maps and previously published 3-D models into one consistent model. This model resolves four major megasequence boundaries (earliest Eocene, mid-Cretaceous, mid-Jurassic and mid-Permian) the top crystalline crust, the Moho and a newly calculated lithosphere–asthenosphere boundary (LAB). The thickness distributions of the corresponding main megasequences delineate five major subdomains (the northern Kara Sea, the southern Kara Sea, the eastern Barents Sea, the western Barents Sea and the oceanic domain comprising the Norwegian–Greenland Sea and the Eurasia Basin). Relating the subsidence histories of these subdomains to the structure of the deeper crust and lithosphere sheds new light on possible causative basin forming mechanisms that we discuss. The depth configuration of the newly calculated LAB and the seismic velocity configuration of the upper mantle correlate with the younger history of this region. The western Barents Sea is underlain by a thinned lithosphere (80 km) resulting from multiple Phanerozoic rifting phases and/or the opening of the NE Atlantic from Paleocene/Eocene times on. Notably, the northwestern Barents Sea and Svalbard are underlain by thinnest continental lithosphere (60 km) and a low-velocity/hot upper mantle that correlates spatially with a region where late Cenozoic uplift was strongest. As opposed to this, the eastern Barents Sea is underlain by a thicker lithosphere (~ 110–150 km) and a high-velocity/density anomaly in the lithospheric mantle. This anomaly, in turn, correlates with an area where only little late Cenozoic uplift/erosion was observed.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...