ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 320 (1986), S. 508-509 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A sensitive way of studying primary physical processes occurring on the Sun in relation to flares is to concentrate on simple events. It is impossible to study a single process in a large flare because of the multifarious mutual interactions of the various flare components. Consequently, we have ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: In this investigation of flare energetics, researchers sought to establish a comprehensive and self-consistent picture of the sources and transport of energy within a flare. To achieve this goal, they chose five flares in 1980 that were well observed with instruments on the Solar Maximum Mission, and with other space-borne and ground-based instruments. The events were chosen to represent various types of flares. Details of the observations available for them and the corresponding physical parameters derived from these data are presented. The flares were studied from two perspectives, the impulsive and gradual phases, and then the results were compared to obtain the overall picture of the energics of these flares. The role that modeling can play in estimating the total energy of a flare when the observationally determined parameters are used as the input to a numerical model is discussed. Finally, a critique of the current understanding of flare energetics and the methods used to determine various energetics terms is outlined, and possible future directions of research in this area are suggested.
    Keywords: SOLAR PHYSICS
    Type: Energetic Phenomena on the Sun: The Solar Maximum Mission Flare Workshop. Proceedings; 20 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: The UCR large area solid-angle double scatter neutron telescope was flown to search for solar neutrons on 3 balloon flights on September 26, 1971, May 14, 1972 and September 19, 1972. The first two flights were launched from Palestine, Texas and the third from Cape Girardeau, Missouri. The float altitude on each flight was at about 5 g/sq cm residual atmosphere. Neutrons from 10 to 100 MeV were measured. No solar flares occurred during the flights. Upper limits to the quiet time solar neutron fluxes at the 95% confidence level are .00028, .00046, .00096 and .00090 neutrons/sq cm-sec in the energy intervals of 10-30, 30-50, 50-100 and 10-100 MeV, respectively.
    Keywords: SOLAR PHYSICS
    Type: AD-A015672 , IGPP-UCR-75-15 , NASA-CR-146331
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-01
    Description: A neutron detector sensitive from 2 to 100 MeV is described. The detector is designed for high altitude balloon flight to measure the flux, energy and direction of albedo neutrons from the earth and to search for solar neutrons. A neutron scatter from a proton is required in each of two liquid scintillator tanks spaced 1 meter apart. The energy of the recoil proton in the first tank is obtained from pulse height analysis of the scintillator output. The energy of the recoil neutron is obtained from its time of flight between the tanks. The detector has been calibrated with 15.3 MeV neutrons and mu mesons. The minimum detectable flux is 10(-4) neutron/sq cm/sec at a counting rate of one per minute; the energy resolution is 12% at 15 MeV and 30% at 100 MeV. The angle between the incoming neutron and the recoil neutron is measured to + or - 10 deg.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: IGPP-UCR-72-2 , NASA-CR-125913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-24
    Description: The electronic equipment design and function are discussed for the solar neutron counter experiment. Circuit diagrams are included.
    Keywords: SPACE RADIATION
    Type: NASA-CR-126393
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-06-07
    Description: Time variations of the 3-12 MeV interplanetary electron intensity, observed by the Explorer-18, -28, and -33 spacecrafts, have been studied in detail. Apart from solar flare effects, there are five distinct periods when the electron intensity has undergone a series of increases, and these are strongly correlated with solar rotation. The intensity increases are separate phenomena, and are strikingly anticorrelated with increases in the low energy solar proton intensity. The electron energy spectrum during those quiet-time increases is typically represented by dJ/dE = k E/2.0 + or - 0.25 similar to the galactic electron spectrum. There are, in addition, Forbush decreases in the electron intensity frequently coincident with those in the neutron monitor. It is concluded that these characteristics all support the hypothesis of a galactic origin for the electrons observed during quiet-time increases.
    Keywords: SPACE RADIATION
    Type: Goddard Space Flight Center Contrib. to the Twelfth Intern. Conf. on Cosmic Rays; p 71-76
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We present a qualitative and quantitative comparison of a single coronal mass ejection (CME) as observed by LASCO (July 28–29, 1996) with the results of a three-dimensional axisymmetric time-dependent magnetohydrodynamic model of a flux rope interacting with a helmet streamer. The particular CME considered was selected based on the appearance of a distinct ‘tear-drop’ shape visible in animations generated from both the data and the model. The CME event begins with the brightening of a pre-existing coronal streamer which evolves into a ‘tear-drop’ shaped loop followed by a Y-shaped structure. The brightening moves slowly outward with significant acceleration reaching velocities of ∼450 km s-1 at 30 R⊙. The observed CME characteristics are compared with the model results. On the basis of this comparison, we suggested that the observed features were caused by the evacuation of a flux rope in the closed field region of the helmet streamer (i.e., helmet dome). The flux rope manifests itself as the cavity of the quasi-static helmet streamer and the whole system becomes unstable when the flux rope reaches a threshold strength. The observed ‘tear-drop’ structure is due to the deformed flux rope. The leading edge of the flux rope interacts with the helmet dome to form the typical loop-like CME. The trailing edge of this flux rope interacts with the local bi-polar field to form the observed Y-shaped structure. The model results for the evolution of the magnetic-field configurations, velocity, and polarization brightness are directly compared with observations. Animations have been generated from both the actual data and the model to illustrate the good agreement between the observation and the model. These animations can be found on the CD-ROM which accompanies this volume.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract More than six hours after the two-ribbon flare of 21 May 1980, the hard X-ray spectrometer aboard the SMM imaged an extensive arch above the flare region which proved to be the lowest part of a stationary post-flare noise storm recorded at the same time at Culgoora. The X-ray arch extended over 3 or more arc minutes to a projected distance of 95 000 km, and its real altitude was most probably between 110 000 and 180 000 km. The mean electron density in the cloud was close to 109 cm−3 and its temperature stayed for many hours at a fairly constant value of about 6.5 × 106 K. The bent crystal spectrometer aboard the SMM confirms that the arch emission was basically thermal. Variations in brightness and energy spectrum at one of the supposed footpoints of the arch seem to correlate in time with radio brightness suggesting that suprathermal particles from the radio noise regions dumped in variable quantities into the low corona and transition layer; these particles may have contributed to the population of the arch, after being trapped and thermalized. The arch extended along the H ∥ = 0 line thus apparently hindering any upward movement of the upper loops reconnected in the flare process. There is evidence from Culgoora that this obstacle may have been present above the flare since 15–30 min after its onset.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A detailed comparison is made between hard X-ray spikes and decimetric type III radio bursts for a relatively weak solar flare on 1981 August 6 at 10: 32 UT. The hard X-ray observations were made at energies above 30 keV with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and with a balloon-born coarse-imaging spectrometer from Frascati, Italy. The radio data were obtained in the frequency range from 100 to 1000 MHz with the analog and digital instruments from Zürich, Switzerland. All the data sets have a time resolution of ∼ 0.1 s or better. The dynamic radio spectrum shows many fast drift type III radio bursts with both normal and reverse slope, while the X-ray time profile contains many well resolved short spikes with durations of ≤ 1 s. Some of the X-ray spikes appear to be associated in time with reverse-slop bursts suggesting either that the electron beams producing the radio bursts contain two or three orders of magnitude more fast electrons than has previously been assumed or that the electron beams can trigger or occur in coincidence with the acceleration of additional electrons. One case is presented in which a normal slope radio burst at ∼ 600 MHz occurs in coincidence with the peak of an X-ray spike to within 0.1 s. If the coincidence is not merely accidental and if it is meaningful to compare peak times, then the short delay would indicate that the radio signal was at the harmonic and that the electrons producing the radio burst were accelerated at an altitude of ∼4 × 109 cm. Such a short delay is inconsistent with models invoking cross-field drifts to produce the electron beams that generate type III bursts but it supports the model incorporating a MASER proposed by Sprangle and Vlahos (1983).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract In this paper we discuss the initial phase of chromospheric evaporation during a solar flare observed with instruments on the Solar Maximum Mission on May 21, 1980 at 20:53 UT. Images of the flaring region taken with the Hard X-Ray Imaging Spectrometer in the energy bands from 3.5 to 8 keV and from 16 to 30 keV show that early in the event both the soft and hard X-ray emissions are localized near the footpoints, while they are weaker from the rest of the flaring loop system. This implies that there is no evidence for heating taking place at the top of the loops, but energy is deposited mainly at their base. The spectral analysis of the soft X-ray emission detected with the Bent Crystal Spectrometer evidences an initial phase of the flare, before the impulsive increase in hard X-ray emission, during which most of the thermal plasma at 107 K was moving toward the observer with a mean velocity of about 80 km s-1. At this time the plasma was highly turbulent. In a second phase, in coincidence with the impulsive rise in hard X-ray emission during the major burst, high-velocity (370 km s-1) upward motions were observed. At this time, soft X-rays were still predominantly emitted near the loop footpoints. The energy deposition in the chromosphere by electrons accelerated in the flare region to energies above 25 keV, at the onset of the high-velocity upflows, was of the order of 4 × 1010 erg s-1 cm-2. These observations provide further support for interpreting the plasma upflows as the mechanism responsible for the formation of the soft X-ray flare, identified with chromospheric evaporation. Early in the flare soft X-rays are mainly from evaporating material close to the footpoints, while the magnetically confined coronal region is at lower density. The site where upflows originate is identified with the base of the loop system. Moreover, we can conclude that evaporation occurred in two regimes: an initial slow evaporation, observed as a motion of most of the thermal plasma, followed by a high-speed evaporation lasting as long as the soft X-ray emission of the flare was increasing, that is as long as plasma accumulation was observed in corona.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...