ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 12 (1978), S. 593-594 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 36 (2000), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The purpose of this paper is to explore the validity of the old analogy that “soil is like a sponge.” Laboratory experiments were conducted to measure two hydrologic properties of porous media: drainage under gravity, and water potential curves. A tipping bucket rain gage connected to a data logger was used to measure the rate at which water drained under the force of gravity from a trough filled with four saturated porous media - cellulose sponges, topsoil, peat, and a medium sand. Pressure plate techniques were used to determine water potential curves for soil materials and sponges. In terms of relative cumulative discharge from the trough, sponges were intermediate between peat and topsoil. Because of their tremendous water-holding capacity, sponges discharged more than 2.5 times as much water as did peat. The water potential curve for sponges was fairly flat, like that of topsoil, but the high water content across all pressures (0.30–15.0 bars) indicated some similarity to peat. The results of these experiments suggest that the general patterns of water retention and release in soil materials and sponges are similar and vary only in degree.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Blum et al. reply We identified apatite as an important reservoir of calcium in the soil horizons termed Bs and C at Hubbard Brook experimental forest (HBEF) and suggested that it could exceed the size of the soil-exchange pool. Apatite has high calcium-to-strontium (Ca/Sr) ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The depletion of calcium in forest ecosystems of the northeastern USA is thought to be a consequence of acidic deposition and to be at present restricting the recovery of forest and aquatic systems now that acidic deposition itself is declining. This depletion of calcium has been inferred from ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1435-0629
    Keywords: Key words: biogeochemistry; calcium; carbon; forest ecology; Hubbard Brook; nitrogen; soil chemistry; soil solution; stream chemistry; weathering.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Chemical changes along headwater streams at the Hubbard Brook Experimental Forest in New Hampshire suggest that important differences exist in biogeochemical cycles along an altitudinal gradient within small watershed ecosystems. Using data collected during the period 1982–92, we have constructed element budgets [Ca, Mg, K, Na, Si, Al, dissolved organic carbon (DOC), S, and N] for three subcatchments within watershed 6, a forested watershed last logged around 1917–20. The biogeochemistry of the high-elevation spruce-fir–white birch subcatchment was dominated by processes involving naturally occuring organic compounds. Stream water and soil solutions in this zone had elevated concentrations of organic acidity, DOC, and organically bound monomeric aluminum (Alo), relative to lower-elevation sites. The middle-elevation subcatchment, dominated by hardwood vegetation, had the greatest net production of inorganic-monomeric aluminum (Ali), and exhibited net immobilization of DOC and Alo. The low-elevation subcatchment, also characterized by deciduous vegetation, had the highest rates of net production of base cations (Ca2+, Mg2+, K+, Na+) among the subcatchments. Living biomass of trees declined slightly in the spruce-fir–white birch subcatchment during the study period, remained constant in the middle-elevation zone, and increased by 5% in the low-elevation subcatchment. Coupling the corresponding changes in biomass nutrient pools with the geochemical patterns, we observed up to 15-fold differences in the net production of Ca, Mg, K, Na, and Si in soils of the three subcatchments within this 13.2-ha watershed. Release of Ca, Na, and dissolved Si in the highest-elevation subcatchment could be explained by the congruent dissolution of 185 mol ha−1 y−1 of plagioclase feldspar. The rate of plagioclase weathering, based on the net output of Na, increased downslope to 189 and 435 mol ha−1 y−1 in the middle-elevation and low-elevation subcatchments, respectively. However, the dissolution of feldspar in the hardwood subcatchments could account for only 26%–37% of the observed net Ca output. The loss of Ca from soil exchange sites and organic matter is the most likely source of the unexplained net export. Furthermore, this depletion appears to be occurring most rapidly in the lower half of watershed 6. The small watersheds at the Hubbard Brook Experimental Forest occupy a soil catena in which soil depth and soil-water contact time increase downslope. By influencing hydrologic flowpaths and acid neutralization processes, these factors exert an important influence on biogeochemical fluxes within small watersheds, but their influence on forest vigor is less clear. Our results illustrate the sensitivity of watershed-level studies to spatial scale. However, it appears that much of the variation in element fluxes occurs in the first 10–20 ha of drainage area.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-515X
    Keywords: forest disturbance ; forest ecosystem ; Potassium biogeochemistry ; soil chemistry ; stream chemistry ; wet and dry deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract A synthesis of the biogeochemistry of K was conducted during 1963–1992 in the reference and human-manipulated watershed-ecosystems of the Hubbard Brook Experimental Forest (HBEF), NH. Results showed that during the first two years of the study (1963–65), which coincided with a drought period, the reference watershed was a net sink for atmospheric inputs of K. During the remaining years, this watershed has been a net source of K for downstream ecosystems. There have been long-term declines in volume-weighted concentration and flux of K at the HBEF; however, this pattern appears to be controlled by the relatively large inputs during the initial drought years. Net ecosystem loss (atmospheric deposition minus stream outflow) showed an increasing trend of net loss, peaking during the mid-1970s and declining thereafter. This pattern of net K loss coincides with trends in the drainage efflux of SO4 2− and NO3 −, indicating that concentrations of strong acid anions may be important controls of dissolved K loss from the site. There were no long-term trends in streamwater concentration or flux of K. A distinct pattern in pools and fluxes of K was evident based on biotic controls in the upper ecosystem strata (canopy, boles, forest floor) and abiotic controls in lower strata of the ecosystem (mineral soil, glacial till). This biological control was manifested through higher concentrations and fluxes of K in vegetation, aboveground litter, throughfall and forest floor pools and soil water in the northern hardwood vegetation within the lower reaches of the watershedecosystem, when compared with patterns in the high-elevation spruce-fir zone. Abiotic control mechanisms were evident through longitudinal variations in soil cation exchange capacity (related to soil organic matter) and soil/till depth, and temporal and disturbance-related variations in inputs of strong-acid anions. Marked differences in the K cycle were evident at the HBEF for the periods 1964–69 and 1987–92. These changes included decreases in biomass storage, net mineralization and throughfall fluxes and increased resorption in the latter period. These patterns seem to reflect an ecosystem response to decreasing rates of biomass accretion during the study. Clearcutting disturbance resulted in large losses of K in stream water and from the removal of harvest products. Stream losses occur from release from slash, decomposition of soil organic matter and displacement from cation exchange sites. Elevated concentrations of K persist in stream water for many years after clearcutting. Of the major elements, K shows the slowest recovery from clearcutting disturbance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: Atlantic white cedar ; calcium ; magnesium ; potassium ; nutrient resorption ; nutrient use efficiency ; wood chemical composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Nutrient resorption from senescing tissues increases plant nutrient-use efficiency, and may be an adaptation to nutrient limitation. In some tree species, retranslocation of nutrients from sapwood during heartwood formation is a comparable process. We measured Ca, Mg and K concentrations in Atlantic white cedar (Chamaecyparis thyoides) stemwood samples taken from two swamps in the northeastern United States and compared them to soil mineral nutrient availability at each site. We found that Ca, Mg and K concentrations were 60–700% higher in sapwood than in the immediately adjacent heartwood, indicating retranslocation of these nutrients from senescing sapwood. Sapwood nutrient concentrations were similar between the two sites. However, nutrient concentrations in the heartwood differed significantly between the sites, as did the relative degree of Ca and Mg retranslocation from senescing sapwood. We found these differences between sites to be inversely related to significant differences in exchangeable Ca, Mg and K as well as Al concentrations in the soil. These findings suggest that the degree of nutrient retranslocation from senescing sapwood may be influenced by soil nutrient availability.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract The organic horizons of forest soils in eleven stands along an elevational gradient on Camels Hump Mountain, Vermont, were analyzed for Pb, Cu, Zn, Ni, Cd, organic matter and organic C. Lead concentration and amount increased with elevation. Vertical profiles of forest floor in the boreal forest showed that highest concentrations for most metals occurred in the upper F horizon. Comparison with 1966 and 1977 samples from the same stands showed that concentrations of Pb, Cu, and Zn and percent organic matter increased by as much as 148% in the intervening 14 yr. Estimates of 1966 amounts of Pb, Cu, and Zn indicated that increases in trace metal amounts over the 14 yr period are consistent with annual deposition rates reported in the literature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 29 (1986), S. 233-243 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract A regional study was conducted to assess current levels of trace metals in the forest floor, and to establish a baseline for future studies of metal accumulation. Quantitative forest floor samples collected from 78 sites in 9 states in the northeastern United States in 1978 and 1980 were analyzed for Zn, Cu, Ni, and Cd. Mean amounts present in the forest floor were 9.8 ± 1.9 (standard error of the mean), 1.7 ± 0.2, 0.86 ± 0.08, and 0.13 ± 0.01 kg ha−1, for Zn, Cu, Ni, and Cd, respectively. Mean concentrations were 133 ± 25, 19.5 ± 1.6, 11 ± 0.8, and 1.7 ± 0.1 mg kg−1, respectively. Differences in metal and organic matter concentrations and amounts among forest types were attributed to geographic location of specific forest types rather than to direct biotic influence. No element was strongly correlated with elevation for the entire sample area. Regional patterns of elemental amounts showed that trace metal levels are slightly higher in the southern part than in the northern part of the study region. Regional variation of Zn, Cu, Ni, and Cd in the forest floor was not indicative of atmospheric deposition except near point sources of pollution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...