ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Bioorganic & Medicinal Chemistry Letters 4 (1994), S. 615-618 
    ISSN: 0960-894X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0968-0896
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Analytical Biochemistry 87 (1978), S. 257-262 
    ISSN: 0003-2697
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Mineralogy and petrology 44 (1991), S. 213-234 
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Der Shiribeshi Seamount liegt östlich des Okushiri Rückens im nordöstlichen Japanischen Meer. Gesamtgesteins K-Ar Alter von Olivin-Augit-Andesiten von diesem Seamount ergeben Werte von 0,9 ± 0,2 Ma (Tsuchiya et al., 1989), und weisen darauf hin, daß Shiribeshi ein quartärer Vulkan im back-arc Bereich nahe dem Kreuzungspunkt des nordostjapanischen und des Kurilen-Inselbogens ist. Er besteht aus Gesteinen, deren Zusammensetzung von Basalt bis Rhyolit reicht. Petrographische Daten von 25 Proben, die von vier submarinen Lokationen durch Dredging aufgesammelt wurden, weisen auf eine typische kalk-alkalische Inselbogenzusammensetzung hin. Die Verbreitung von inkompatiblen Elementen, die unter anderem K, Rb, Sr, Nb, P, Ti, Y und Zr umfassen, in 16 representativen Proben wird zusammen mit denen von quartären vulkanischen Gesteinen aus dem nordöstlichen Japanischen und den Kurilen-Inselbogen diskutiert; dabei wird Variationen der Zusammensetzung über die Bögen hinweg besondere Beachtung geschenkt. Die so ermittelte Zusammensetzung des primären Magmas des Shiribeshi Vulkans wird durch höhere inkompatible Elementgehalte und höhere Zr/Y Verhältnisse charakterisiert, wenn man sie mit primären Magmen an der vulkanischen Stirn des Inselbogens vergleicht. HFS Element-Konzentrationen lassen erkennen, daß der Grad teilweiser Aufschmelzung für drei primäre Magmen von Oshima-Oshima, Shiribeshi und Rishiri im nordöstlichen Japanischen Meer graduell mit zunehmender Entfernung von der vulkanischen Stirm abnimmt. Die Gehalte an LIL Elementen und besonders an K und Rb sind in dem primären Magma des Rishiri Vulkans, der weit von der vulkanischen Front entfernt liegt, höher als in den zwei anderen primären Magmen. Dies weist darauf hin, daß LIL/HFS Verhältnisse (oder der Beitrag von LIL Elementen, die aus subduzierter ozeanischer Kruste stammen) am Rishiri Vulkan ein Minimum erreichen. Ein Basalt und drei Andesite von Shiribeshi zeigen87Sr/86Sr Verhältnisse von 0,70297 bis 0,70300; dies läßt erkennen, daß die Quelle des Magmas für Shiribeshi etwas mehr an87Sr angereichert war, als dieN-Typ Quelle.
    Notes: Summary Shiribeshi Seamount is located to the east of the Okushiri Ridge, in the northeast Japan Sea. Whole rock K-Ar age of olivine-augite andesite dredged from the Seamount was determined to be 0.9 ± 0.2 Ma (Tsuchiya et al., 1989), indicating that Shiribeshi Seamount is a Quaternary volcano in the back-arc region off the junction of the Northeast Japan and Kurile arcs. Shiribeshi volcano is composed of basalt to rhyolite, which show a typical island arc calc-alkaline nature on the basis of petrographical characteristics of 95 samples dredged from four sites. Abundances of incompatible elements including K, Rb, Sr, Nb, P, Ti, Y and Zr in 16 representative rocks are discussed, together with those in the Quaternary volcanic rocks from the NE Japan and Kurile arcs in terms of compositional variation across the arcs. The estimated composition of the primary magma of Shiribeshi volcano is characterized by higher incompatible element contents and a higher Zr/Y ratio than primary magmas in the volcanic front side. Based on HFS element concentrations the degree of partial melting for three primary magmas of Oshima-Oshima, Shiribeshi and Rishiri volcanoes in the northeast Japan Sea may decrease gradually with increasing distance from the volcanic front. However, LIL element contents, especially K and Rb are lower in the primary magma of Rishiri volcano located far from the volcanic front than in the remaining two primary magmas, which would imply that LIL/HFS ratios (or degree of contribution of LIL elements originating from the subducted oceanic crust) become minimal at Rishiri volcano. One basalt and three andesites from Shiribeshi volcano have the restricted range of low87Sr/86Sr ratios of 0.70297–0.70300, which indicates that the magma source for Shiribeshi volcano may be slightly more enriched in Sr isotopic compositions than theN-type MORB source.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1438-1168
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Zusammenfassung Die Beziehungen zwischen der zeitlichen Veränderung der Charakteristika von Magmenquellen und der Öffnung des Japanischen Meeres werden anhand von Sr-Isotopendaten tertiärer und quartärer basaltischer Gesteine diskutiert. Basaltische Gesteine von der Grabenseite und aus der Übergangszone ergaben initiale87Sr/86Sr Verhältnisse (Sri-Verhältnisse) von 0.70411–0.70546 und lassen keine zeitabhängige Änderung erkennen. Basaltische Besteine aus dem Back-Arc-Bereich mit Altern zwischen 29.8 und ca. 15 Ma zeigen ähnliche Sri-Verhältnisse und ebenfalls keine zeitliche Veränderung. Im Gegensatz dazu sind basaltische Gesteine aus dem Back-Arc-Bereich, die jünger als ca. 15 Ma sind, signifikant in ihren Sri-Verhältnissen (0.70396–0.70290) erniedrigt. Diese Verhältnisse liegen etwas höher als die von N-MORB. Die Sr-Isotopenergebnisse lassen vermuten, daß zumindest vor ca. 15 Ma der Herkunftsbereich der Magmen (subkontinentaler Mantel) unter dem NE japanischen Vulkanbogen chemisch angereichert war, während die Magmenquellen der jüngeren vulkanischen Gesteine des Back-Arc-Bereiches durch eine drastische Abreicherung charakterisiert sind. Die abgereicherten Magmen könnten, während der Öffnung des japanischen Back-Arc-Beckens, als Folge der Injektion abgereicherter Asthenosphäre (oder eines abgereicherten Manteldiapirs) in subkontinentalen Mantel unterhalb des Back-Arcs des NE japanischen Vulkanbogens, gebildet worden sein. Die miozänen basaltischen Gesteine des Back-Arc-Bereiches sind außerdem durch niedrigere Gehalte an LIL-Elementen, wie z.B. K2O und Rb charakterisiert. Dies wird als Hinweis auf eine erhöhte Aufschmelzungsrate in diesem Bereich im mittleren Miozän (im Zuge der gleichzeitigen Öffnung des japanischen Meeres) verstanden. Die erhöhte Aufschmelzrate im Mantel des Back-Arc-Breiches wird auf einer Erhöhung des geothermischen Gradienten infolge der Injektion von heißer Asthenosphäre zurückgeführt. Diese Injektion von Asthenosphäre könnte auch der Grund für die Aufschmelzung von Unterkruste und für die Produktion weitverbreiteter saurer miozäner Vulkanite im Back-Arc-Bereich und der Übergangszone sein.
    Notes: Summary Based on Sr isotopic data for Tertiary and Quaternary basaltic rocks from the NE Japan arc, relationships are discussed between the temporal variation of magma source characteristics and the opening of the Japan Sea. The basaltic rocks from the trench side and from the transitional zone show initial87Sr/86Sr ratios (Sri ratios) in the range of 0.70411–0.70546 but no temporal variation in Sri ratios. The back-arc side basaltic rocks with ages of 29.8 to ≈ 15 Ma have Sri ratios similar to those of the trench side and the transitional zone, and these values also show no temporal change. In contrast, the basaltic rocks from the back-arc side, with ages younger than ≈ 15 Ma, show significantly lower Sri ratios (0.70396 to 0.70290), which are slightly higher than those of N-type MORB. These Sr isotopic features may imply that at least before ≈ 15 Ma the magma source regions (the sub-continental mantle) beneath the NE Japan arc had an enriched chemical character and that after ≈ 15 Ma, the magma sources for volcanic rocks from the back-arc side show a drastic change in Sr isotopic character, from an enriched nature to a depleted one. The depleted magmas may have been formed as a result of injection of depleted asthenosphere (or of a depleted mantle diapir) into the subcontinental mantle under the back-arc side of the NE Japan arc, during the spreading of the Japan Sea back-arc basin. The middle Miocene basaltic rocks from the back-arc side are characterized by lower contents of LIL elements such as K2O and Rb compared with those from the trench side, suggesting that during the middle Miocene (syn-opening stage of the Japan Sea) the degree of partial melting may have been higher in the back-arc side mantle than in the trench side mantle. High degree of partial melting in the back-arc side mantle can be attributed to an increasing geothermal gradient in the mantle due to the injection of hot asthenosphere. This injection might also have caused the melting of the lower crust from which the voluminous middle Miocene acidic volcanics in the back-arc side and transitional zone may have been produced.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-12-25
    Description: To investigate the nature and origin of across-arc geochemical variations over time in mantle wedge derived magmas, we have carried out a geochemical study of basalts in the NE Japan arc spanning an age range from 35 Ma to the present. Back-arc basalts erupted at 24–18 Ma, 10–8 Ma, 6–3 Ma and 2·5–0 Ma have higher concentrations of both high field strength elements (HFSE) and rare earth elements (REE) [particularly light REE (LREE) and middle REE (MREE)], and higher incompatible trace element ratios compared with frontal-arc basalts at any given time. Geochemical modeling of Nb/Yb versus Nb shows that the frontal-arc and back-arc compositional differences are independent of subduction modification and can, in many cases, be explained by different degrees of melting (higher degrees of melting for frontal-arc magmas and lower degrees of melting for back-arc magmas) of a nearly homogeneous depleted mid-ocean ridge basalt (MORB) mantle (DMM)-like source, although there are several exceptions. These include some Pliocene frontal-arc basalts that may originate from a source that is slightly more depleted than DMM, several 35–32 Ma and 24–18 Ma back-arc basalts derived from a lithospheric mantle source that is enriched in HFSE compared with DMM, and a rare 16–12 Ma basalt that was erupted in the back-arc but was produced by a similar degree of melting to frontal-arc basalts erupted at the same time. Variations in ratios of fluid-mobile and -immobile elements and those of melt-mobile and -immobile elements for the 35–0 Ma NE Japan basalts indicate that the principal subduction component added to the source mantle prior to generation of these basalt magmas is a sediment-derived melt. Comparison of Sr and Nd isotopic compositions for Pacific Ocean MORB, the NE Japan basalts and subducting sediments suggests that the isotopic compositions of most post-16 Ma more depleted back-arc basalts can be explained by the addition of 〈2% bulk sediment; the most enriched isotope compositions of the subcontinental lithosphere-derived magmas can be accounted for by addition of a maximum 5–7% Japan Trench Sediment (JTS), if the original Sr and Nd compositions of the lithosphere approximated that of DMM. The Sr and Nd isotope composition of the frontal-arc basalts can be accounted for by the addition of 1–5% JTS. A depleted asthenospheric mantle (DMM-like) upwelling model with interaction between asthenospheric mantle-derived magmas and overlying lithospheric mantle can account for the geochemical characteristics of the 35–0 Ma NE Japan basalts. The frontal-arc magmas were generally generated by higher degrees of melting of the shallower part of the asthenospheric mantle, whereas the back-arc magmas resulted from lower degrees of melting of the deeper part of asthenospheric mantle. These latter magmas underwent interaction with the lithospheric mantle, resulting in more enriched Sr and Nd isotopic signatures for the pre-18 Ma back-arc basalts and post-22 Ma frontal-arc basalts, but less interaction, resulting in more depleted Sr and Nd isotopic signatures, for most of the back-arc basalts younger than 16 Ma.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1977-11-01
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-13
    Description: Late Oligocene to Middle Miocene adakitic andesites are found in the southern part of Okushiri Island, the northern Noto Peninsula and in the Toyama region in the present-day back-arc margin of the SW and NE Japan arcs. On Okushiri Island, adakitic andesite is accompanied by moderately alkaline basalt, whereas on the Noto Peninsula, adakitic andesite has been erupted along with high magnesian andesite (HMA), bronzite andesite and tholeiitic basalt. Adakitic andesites from all three locations are characterized by high Sr/Y and low Y, and have higher MgO contents than adakitic melts generated by experimental melting of metabasalt and amphibolite. They also have higher Ni and Cr contents than either Archaean tonalite–trondhjemite–granodiorite (TTG) suites or Early Cretaceous adakitic granites, which have been attributed to partial melting of subducted oceanic crust. The Noto Peninsula adakitic andesite has Sr and Nd isotopic compositions identical to normal mid-ocean ridge basalt (N-MORB), whereas the Okushiri Island and Toyama adakitic andesites are more isotopically primitive than N-MORB. The Noto Peninsula primary adakitic melt was derived from subducted oceanic N-MORB crust, whereas the Okushiri Island and Toyama primary adakites are interpreted as melts of subducted N-MORB and sediment that have subsequently interacted with the overlying mantle wedge peridotite. To explain the comagmatism of adakite, HMA and basalt, the following model is proposed. A hydrated adakitic diapir ascends from the subducting slab and is heated because it enters the overlying hot mantle wedge. The subsequent establishment of thermal and H 2 O gradients in the adakitic diapir and surrounding mantle wedge peridotite results in concurrent generation of adakitic andesite magma in the inner adakitic diapir region (low temperature and high H 2 O content), HMA and bronzite andesite magmas in the intermediate peridotite region (intermediate temperature and H 2 O content), and tholeiitic basalt magma in the outer peridotite region (high temperature and lower H 2 O content). Comagmatic adakite and mildly alkaline basalt are found in cooler and wetter adakitic diapirs and hotter and drier peridotite regions respectively. The most likely tectono-magmatic situation for the genesis of adakitic magmas in this example of a cool subduction zone involves upwelling of hot asthenosphere into the subcontinental lithosphere beneath the back-arc side of the NE Japan arc and northern end of the SW Japan arc, during the period spanning the pre-Japan Sea opening to syn-opening stages. The unusually high temperature conditions established in the mantle wedge owing to upwelling of hot asthenosphere caused partial melting of the relatively cool subducting Pacific plate, resulting in the generation of adakitic magmas.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-24
    Description: In the Okoppe area of North Hokkaido, Japan, the eruption of adakitic and calc-alkaline dacites was followed by high-Mg andesite (HMA) and calc-alkaline dacite during the Middle Miocene (12–10 Ma). Adakitic dacite is characterized by high Sr/Y and low Y, with Sr and Nd isotopic compositions identical to those of mid-ocean ridge basalt. It has higher MgO contents than adakites generated by experimental melting of metabasalt and amphibolite, and higher Ni and Cr contents than either Archean trondhjemite–tonalite–granodiorite or Early Cretaceous adakitic granites, which are considered to represent partial melts of subducted oceanic crust. This provides compelling evidence that adakitic dacite magma from Okoppe resulted from interaction of a melt derived from subducted oceanic basaltic crust and the overlying mantle wedge peridotite, with little modification to the adakitic melt signature and Sr and Nd isotopic values. The compositional variations in the Toyono adakitic dacite and associated calc-alkaline dacite probably resulted from mixing of the reacted magma and an evolved silicic dacite magma formed by fractional crystallization of the reacted magma. A disequilibrium phenocryst assemblage in the HMA may result from mixing of boninite and silicic andesite that resulted from crustal melting. Calc-alkaline dacites associated with the HMA were derived by fractional crystallization of silicic andesite and assimilation of crust with an enriched Sr isotopic signature. The most likely tectono-magmatic model for the production of adakitic dacite and HMA involves upwelling of hot asthenosphere into the subcontinental lithosphere beneath North Hokkaido and the back-arc side of the NE Japan arc, coincident with the spreading of the Kurile back-arc basin and Japan Sea back-arc basin. This resulted in a high geothermal gradient in the mantle wedge beneath North Hokkaido. The subsequent melting of a limited part of the cool oceanic crust subducting beneath Hokkaido produced adakitic magmas, which interacted with the overlying mantle wedge peridotite. These magmas subsequently reacted with an evolved calc-alkaline melt en route to the surface. Boninitic magma derived from the ascending hot asthenosphere in part reacted with crust-derived silicic andesitic magma, undergoing simultaneous fractional crystallization.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-26
    Description: The Ryozen Formation, which crops out on the trench side of the NE Japan arc, contains middle Miocene rhyodacite with adakite-like trace element geochemical characteristics (Ryozen adakitic rhyodacite) and spatially and temporally related basalt (Ryozen basalt) and andesite (Ryozen andesite). K–Ar age data for the basalt and a zircon U–Pb age for the adakitic rhyodacite, combined with the stratigraphy, suggest that all of these volcanic rocks were erupted at about 16–14 Ma. The primitive nature of the Ryozen basalt is shown by its high MgO (maximum 14·1 wt %), Ni (392 ppm) and Cr (1193 ppm) contents. Using the olivine maximum fractionation model, the segregation depth of the parental primary magma to this basalt is estimated at c . 50 km (about 1·5 GPa). The Ryozen andesite has slightly higher 87 Sr/ 86 Sr initial (SrI) and lower 143 Nd/ 144 Nd initial (NdI) ratios than the Ryozen basalt. This, and the characteristics of the variation trends defined by basalt and andesite samples in SiO 2 versus major and trace element variation diagrams, suggests that the andesite may have resulted from fractional crystallization of basaltic magma with minor assimilation of pre-Cretaceous sedimentary rocks (i.e. an AFC process). The Ryozen rhyodacite has phenocrysts of plagioclase, amphibole, garnet and titanomagnetite, and is characterized by low Sr/Y ratios (~30), low Y concentrations (〈10 ppm), high chondrite-normalized La/Yb [(La/Yb) cn ] (〉25) and low chondrite-normalized Yb [(Yb) cn ] values (〈5 ppm). These geochemical characteristics are similar to those of a new adakite subgroup (rhyodacite lavas in eastern Jamaica; Jamaican-type adakite). Thus, we define the Ryozen rhyodacite as the Ryozen low Sr/Y adakitic rhyodacite. A potential mechanism for the generation of this rhyodacite is crystal fractionation of plagioclase, orthopyroxene, clinopyroxene, amphibole, garnet, titanomagnetite and minor apatite from an andesitic parent magma. This mechanism is consistent with mass-balance modeling, which matches the observed major and trace element chemistry, as well as SrI and NdI, for the Ryozen andesite and low Sr/Y adakitic rhyodacite. The most likely tectono-magmatic model for the production of the volcanic rocks of the Ryozen Formation involves the upwelling of depleted hot asthenosphere, which modified the thermal structure of the mantle wedge beneath the trench side of the arc during the middle Miocene. This resulted in partial melting of both mantle wedge peridotite and the relatively cool subducting Pacific plate, leading to the simultaneous production of primitive basalt, normal andesite, high-magnesium andesite and low and high Sr/Y adakitic rhyodacites.
    Print ISSN: 0022-3530
    Electronic ISSN: 1460-2415
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...