ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Onshore tsunami deposits ; 1993 Southwest Hokkaido earthquake ; 1983 Japan Sea earthquake ; eastern coast of the Japan Sea ; paleoseismicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9136
    Keywords: 1993 Southwest Hokkaido earthquake ; tsunami ; tsunami hazard ; Okushiri Island ; tsunami hazard assessment
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Detailed field work at Okushiri Island and along the southwest coast of Hokkaido has revealed quantitatively (1) the advancing direction of tsunami on land, (2) the true tsunami height (i.e., height of tsunami, excluding its splashes, as measured from the ground) and (3) the flow velocity of tsunami on land, in heavily damaged areas. When a Japanese wooden house is swept away by tsunami, bolts that tie the house to its concrete foundation resist until the last moment and become bent towards the direction of the house being carried away. The orientations of more than 850 of those bent bolts and iron pipes (all that can be measured, mostly at Okushiri Island) and fell-down direction of about 400 trees clearly display how tsunami behaved on land and caused serious damage at various places. The true tsunami height was estimated by using several indicators, such as broken tree twigs and a window pane. The flow velocity of tsunami on land was determined by estimating the hydrodynamic force exerted on a bent handrail and a bent-down guardrail by the tsunami throughin situ strength tests. Contrary to the wide-spread recognition after the tsunami hazard, our results clearly indicate that only a few residential areas (i.e., Monai, eastern Hamatsumae, and a small portion at northern Aonae, all on Okushiri Island) were hit by a huge tsunami, with true heights reaching 10 m. Southern Aonae was completely swept away by tsunami that came directly from the focal region immediately to the west. The true tsunami height over the western sea wall of southern Aonae was estimated as 3 to 4 m. Northern Aonae also suffered severe damage due to tsunami that invaded from the corner zone of the sand dune (8 m high) and tide embankment at the northern end of the Aonae Harbor. This corner apparently acted as a tsunami amplifier, and tide embankment or breakwater can be quite dangerous when tsunami advances towards the corner it makes with the coast. The nearly complete devastation of Inaho at the northern end of Okushiri Island underscored the danger of tsunami whose propagation direction is parallel to the coast, since such tsunami waves tend to be amplified and tide embankment or breakwater is constructed low towards the coast at many harbors or fishing ports. Tsunami waves mostly of 2 to 4 m in true height swept away Hamatsumae on the southeast site of Okushiri Island where there were no coastal structures. Coastal structures were effective in reducing tsunami hazard at many sites. The maximum flow velocity at northern Aonae was estimated as 10 to 18 m/s (Tsutsumi et al., 1994), and such a high on-land velocity of tsunami near shore is probably due to the rapid shallowing of the deep sea near the epicentral region towards Okushiri Island. If the advancing direction, true height, and flow velocity of tsunami can be predicted by future analyses of tsunami generation and progagation, the analyses will be a powerful tool for future assessment of tsunami disasters, including the identification of blind spots in the tsunami hazard reduction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1440-1738
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract Cataclastic rocks found in the Disaster Prevention Research Institute, Kyoto University (DPRI) 500 m drill core and outcrops along the Nojima Fault zone on Awaji Island, southwest Japan, were examined at mesoscopic and microscopic scales. The damaged zone of this fault in granitic rocks, observed on the southeast side of the fault, is 50–60 m wide and is composed of fractured host rocks and cataclastic rocks including cataclasite, fault breccia, and fault gouge. The fault breccia and gouge of small scales are scattered in the damaged zone. Fault core (zone of extremely concentrated shearing deformation along a fault) consists of fault gouge measuring several tens to approximately 150 mm in width, as recognized both in the drill core and at outcrops of the Nojima Fault along which surface ruptures formed during the 1995 Kobe earthquake. Fault breccia, measuring a few meters wide, has developed pervasively in the damaged zone, just next to the fault core. Pseudotachylyte has been found interlayered with fault gouge within the fault core only at outcrops at Hirabarashi, not in the DPRI 500 m core. Petrological studies and powder X-ray diffraction analysis show that the pseudotachylyte and fault gouge are composed mainly of fine-grained angular clasts of the host granitic rocks, suggesting the pseudotachylyte is of ‘crush origin’. Foliated cataclasite is characterized by the preferred orientation of elongated biotite clasts and granular aggregates of quartz and feldspar clasts, and by the development of cataclastic shear bands. Unlike cataclastically deformed quartz and feldspar in the cataclasite, biotite in the foliated cataclasite shows combinations of brittle and plastic deformation, such as biotite ‘fish’, cleavage steps, bending and kinking. These textures suggest that the foliated cataclasite formed at a deeper level than the cataclasite, fault breccia and gouge, possibly before the Quaternary period during which the Nojima Fault has moved as a dextral strike–slip fault with some reverse movement resulting in the uplifting of Awaji Island. Examination of fault rocks from surface outcrops can yield similar results to those obtained from drill cores with regard to the internal structures of a fault zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 436 (2005), S. 689-692 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] An earthquake occurs when a fault weakens during the early portion of its slip at a faster rate than the release of tectonic stress driving the fault motion. This slip weakening occurs over a critical distance, Dc. Understanding the controls on Dc in nature is severely ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-07-02
    Description: Detailed mapping of complex fault zones shows that secondary faults often branch off the principal slip zone. However, the effect of secondary branch faults on the hydrodynamic behaviour of fault zones has not yet been examined, largely because of a lack of hydraulic data and because numerical or analogue modelling of splay faulting is a complex issue. This contribution investigates the thermal pressurization process in cases of slip along a principal slip zone and along splay faults branching off the principal displacement zone. The study is based on porosity and permeability data presented in this paper from the principal and secondary slip zones of an active, clay-rich gouge-bearing strike-slip fault, the Usukidani fault of SW Japan. Modelling constrained by these data suggests that thermal pressurization is a viable process only as long as the rupture remains located in the central gouge zones or in mature splay fault gouge zones. Splaying of the rupture into surrounding microbreccias or into immature or newly generated splay faults of higher permeability will release fluid pressure or inhibit the generation of coseismic excess fluid pressures by thermal pressurization. The modelling results suggest that secondary fault branches can play a key role in controlling fluid pressurization during faulting. Hence, complete investigation of active fault zones needs to include secondary faults and their corresponding hydraulic behaviour, in order to establish the influence of such structures on earthquake mechanics.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-01-01
    Description: Experiments performed on dolomite or Mg-calcite gouges at seismic slip rates (v 〉 1 m/s) and displacements (d 〉 1 m) show that the frictional coefficient {micro} decays exponentially from peak values (mp {approx} 0.8, in the Byerlee's range), to extremely low steady-state values ({micro}ss {approx} 0.1), attained over a weakening distance Dw. Microstructural observations show that discontinuous patches of nanoparticles of dolomite and its decomposition products (periclase and lime or portlandite) were produced in the slip zone during the transient stage (d 〈 Dw). These observations, integrated with CO2 emissions data recorded during the experiments, suggest that particle interaction in the slip zone produces flash temperatures that are large enough to activate chemical and physical processes, e.g., decarbonation reactions (T = 550 {degrees}C). During steady state (d [≥] Dw), shear strength is very low and not dependent upon normal stresses, suggesting that pressurized fluids (CO2) may have been temporarily trapped within the slip zone. At this stage a continuous layer of nanoparticles is developed in the slip zone. For d 〉〉 Dw, a slight but abrupt increase in shear strength is observed and interpreted as due to fluids escaping the slip zone. At this stage, dynamic weakening appears to be controlled by velocity dependent properties of nanoparticles developed in the slip zone. Experimentally derived seismic source parameter Wb (i.e., breakdown work, the energy that controls the dynamics of a propagating fracture) (1) matches Wb values obtained from seismological data of the A.D. 1997 M6 Colfiorito (Italy) earthquakes, which nucleated in the same type of rocks tested in this study, and (2) suggests similar earthquake-scaling relationships, as inferred from existing seismological data sets. We conclude that dynamic weakening of experimental faults is controlled by multiple slip weakening mechanisms, which are activated or inhibited by physicochemical reactions in the slip zone.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-01-01
    Description: Anomalously low heat flow around active faults has been a recurrent subject of debate over past decades. We present a series of high-velocity friction experiments on gypsum rock cylinders showing that the temperature of the simulated fault plane is efficiently buffered due to large-scale endothermic dehydration reaction. The tests were performed at 1 MPa normal stress and a velocity of 1.3 m s-1, while measuring the temperature close to the sliding surface and the relative humidity around the sample. The temperature close to the sliding surface is remarkably stable at [~]100 {degrees}C during the dehydration reaction of gypsum. Microstructural and X-ray diffraction investigations show that dehydration occurs at the very beginning of the test, and progresses into the bulk as slip increases. In the hottest parts of the sample, anhydrite crystal growth is observed. The half-thickness of the dehydrated layer ranges from 160 {micro}m at 2 m slip to 5 mm at 68 m slip. Thermodynamic estimates of the energy needed for the dehydration to occur yield values ranging from 10% to 50% of the total mechanical work input. The temperature plateau is thus well explained by the energy sink due to the dehydration reaction and the phase change from liquid water into steam. We suggest that similar endothermic reactions can efficiently buffer the temperature of fault zones during an earthquake. This is a way to explain the low heat flow around active faults and the apparent scarcity of frictional melts in nature.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-06-01
    Description: Nanoparticles are known to form in narrow slip zones in natural and experimental fault zones, but their possible role in dynamic weakening of faults during seismic slip remains almost unexplored. We conducted friction experiments on periclase (MgO) nanoparticles (50 nm in average size) at rates as high as 1.3 m s-1, a typical speed of seismic slip. The nanoparticles were used as the initial gouge to avoid complexities arising from comminution and fluid release. The dynamic friction decreased with increasing slip rate and the steady-state frictional coefficient reduced to as low as 0.1 at a slip rate of 1.3 m s-1. Flash heating is not effective for nanoparticles, and we propose that development of slickensides and dominant operation of nanoparticle rolling cause such a weakening. Nanoparticle lubrication appears to be as effective as melt lubrication and thermal pressurization, and the formation of nanoparticles in slip zones may be an important fault lubrication process.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-10-01
    Print ISSN: 1367-9120
    Electronic ISSN: 1878-5786
    Topics: Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...