ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-08-15
    Description: Synthetic Aperture Radar (SAR) image offset tracking is increasingly being used for measuring ground displacements, e.g., due to earthquakes and landslide movement. However, this technique has been applied only to images acquired by the same or identical satellites. Here we propose a novel approach for determining offsets between images acquired by different satellite sensors, extending the usability of existing SAR image archives. The offsets are measured between two multi-image reflectivity maps obtained from different SAR datasets, which provide significantly better results than with single pre- and post-event images. Application to the 2001 M w 7.6 Bhuj earthquake reveals, for the first time, its near-field deformation using multiple pre-earthquake ERS and post-earthquake Envisat images. The rupture model estimated from these cross-sensor offsets and tele-seismic waveforms shows a compact fault slip pattern with fairly short rise times (〈3 s) and a large stress drop (20 MPa), explaining the intense shaking observed in the earthquake.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-08-28
    Description: Nature Geoscience 8, 708 (2015). doi:10.1038/ngeo2518 Authors: Jean-Philippe Avouac, Lingsen Meng, Shengji Wei, Teng Wang & Jean-Paul Ampuero Large earthquakes are thought to release strain on previously locked faults. However, the details of how earthquakes are initiated, grow and terminate in relation to pre-seismically locked and creeping patches is unclear. The 2015 Mw 7.8 Gorkha, Nepal earthquake occurred close to Kathmandu in a region where the prior pattern of fault locking is well documented. Here we analyse this event using seismological records measured at teleseismic distances and Synthetic Aperture Radar imagery. We show that the earthquake originated northwest of Kathmandu within a cluster of background seismicity that fringes the bottom of the locked portion of the Main Himalayan Thrust fault (MHT). The rupture propagated eastwards for about 140 km, unzipping the lower edge of the locked portion of the fault. High-frequency seismic waves radiated continuously as the slip pulse propagated at about 2.8 km s−1 along this zone of presumably high and heterogeneous pre-seismic stress at the seismic–aseismic transition. Eastward unzipping of the fault resumed during the Mw 7.3 aftershock on 12 May. The transfer of stress to neighbouring regions during the Gorkha earthquake should facilitate future rupture of the areas of the MHT adjacent and updip of the Gorkha earthquake rupture.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-24
    Description: [1]  We derive a finite slip model for the 2013 M w 8.3 Sea of Okhotsk Earthquake (Z = 610 km) by inverting calibrated teleseismic P-waveforms. The inversion shows that the earthquake ruptured on a 10° dipping rectangular fault zone (140 km × 50 km) and evolved into a sequence of 4 large sub-events (E1-E4) with an average rupture speed of 4.0 km/s. The rupture process can be divided into two main stages. The first propagated south, rupturing sub-events E1, E2 and E4. The second stage (E3) originated near E2 with a delay of 12 s and ruptured northwards, filling the slip-gap between E1 and E2. This kinematic process produces an overall slip pattern similar to that observed in shallow swarms, except it occurs over a compressed time span of about 30s and without many aftershocks, suggesting that sub-event triggering for deep events is significantly more efficient than for shallow events.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-23
    Description: [1]  We investigate the finite rupture processes of two M 〉 5 earthquakes in the 2012 Brawley swarm by joint inversion of nearby strong motion and high-rate GPS data. Waveform inversions up to 3Hz were made possible by using a small event (M w 3.9) for path calibration of the velocity structure. Our results indicate that the first (M w 5.3) event ruptured a strong, concentrated asperity with offsets of ~20 cm centered at a depth of 5 km. The subsequent M w 5.4 event occurred 1.5 hours later with a shallower slip distribution that surrounds and is complementary to that of the earlier event. The second event has a longer rise time and weaker high frequency energy release compared to the M w 5.3 event. Both events display strong rupture directivity towards southwest and lack of very shallow (〈2 km) co-seismic slip. The hypocenters for these events appear to be near or in the bedrock, but most of the slip is distributed at shallower depths (〈6 km) and can explain a large part of the GPS offsets for the swarm. The complementary slip distributions of the two events suggest a triggering relationship between them with no significant creep needed to explain the various data sets.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-08-24
    Description: SUMMARY Teleseismic SH waves are essential for imaging the rupture processes of large earthquakes. However, for great earthquakes ( M 8+) such as the 2004 Sumatra earthquake, the 2008 Wenchuan earthquake and the recent Tohoku-Oki earthquake, the source duration is very long (〉100 s). Thus the direct SH waves are overlapped with ScS waves for epicentral distances larger than 60°, leaving contaminated S waves for source processes modelling. Therefore artefacts in finite fault models of large earthquake could be produced with such contaminated body waves. We propose an iterative algorithm based on the slowness information of S and ScS waves and stacking technique, to separate S and ScS waves with records from a regional seismic network. Tests on various synthetic data sets show that the algorithm is effective in retrieving teleseismic SH waveforms from complicated wave trains containing both S and ScS . Separation of waveforms for the 2008 Wenchuan earthquake with our algorithm clearly demonstrates the influence of ScS energy, suggesting necessity of recovering S waves.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-20
    Description: Traditionally, P wave arrival times have been used to locate regional earthquakes. In contrast, the travel times of surface waves dependent on source excitation and the source parameters and depth must be determined independently. Thus surface wave path delays need to be known before such data can be used for location. These delays can be estimated from previous earthquakes using the cut-and-paste technique, Ambient Seismic Noise tomography, and from 3D models. Taking the Chino Hills event as an example, we show consistency of path corrections for (〉10 s) Love and Rayleigh waves to within about 1 s obtained from these methods. We then use these empirically derived delay maps to determine centroid locations of 138 Southern California moderate-sized (3.5 〉 Mw 〉 5.7) earthquakes using surface waves alone. It appears that these methods are capable of locating the main zone of rupture within a few (∼3) km accuracy relative to Southern California Seismic Network locations with 5 stations that are well distributed in azimuth. We also address the timing accuracy required to resolve non-double-couple source parameters which trades-off with location with less than a km error required for a 10% Compensated Linear Vector Dipole resolution.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-09-01
    Description: Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico Nature Geoscience 4, 615 (2011). doi:10.1038/ngeo1213 Authors: Shengji Wei, Eric Fielding, Sebastien Leprince, Anthony Sladen, Jean-Philippe Avouac, Don Helmberger, Egill Hauksson, Risheng Chu, Mark Simons, Kenneth Hudnut, Thomas Herring & Richard Briggs The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the Mw 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone.
    Print ISSN: 1752-0894
    Electronic ISSN: 1752-0908
    Topics: Geosciences
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Abstract Myanmar is located at the eastern margin of the ongoing Indo‐Eurasian collision system, has experienced a complex tectonic history and is threatened by a high level of seismic hazard. Here we develop a crustal scale 3‐D seismic velocity model of Myanmar, which is not only critical for understanding the regional tectonic setting and its evolution but can also provide the foundation for a variety of seismological studies, including earthquake location determinations, earthquake focal mechanism inversions, and ground motion simulations. We use the newly deployed Earth Observatory of Singapore‐Myanmar broadband seismic network and other seismic stations in and around Myanmar to study the station‐based 1‐D velocity structure through a joint inversion of receiver functions, H/V amplitude ratio of Rayleigh waves, and surface wave dispersion measurements. Our results reveal a highly variable crustal structure across Myanmar region, characterized by a series of N‐S trending sedimentary basins, with thicknesses up to ~15 km in central Myanmar and an ~5‐km step in the depth of the Moho across the Sagaing‐Shan Scarp fault system. We interpolate our station‐based 1‐D velocity profiles to obtain an integrated 3‐D velocity model from southern Bangladesh to Myanmar. Using three regional earthquakes located to the south, within, and north of the seismic network, we show that our proposed model performs systematically better than the CRUST 1.0 model for both Pnl waves and surface waves. Our study provides a preliminary community velocity model for the region, with further refinements and interpretations anticipated in the near future.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Abstract The complex near trench velocity structures, characterized by strongly varying bathymetry along with seawater, can produce substantial waveform complexities for near trench earthquakes, which makes it difficult to study earthquake source parameters through waveform modeling/inversion. Here we explore these wavefield complexities via modeling teleseismic records of a Mw6.6 near coast event and a Mw6.8 near trench event in the 2015 Illapel earthquake sequence. For the near coast event, the waveforms of direct P waves at teleseismic/diffracted distances are simple, and we obtain consistent source parameters between 1D regional and teleseismic waveform inversions. In contrast, the near trench event produces stronger and longer P coda waves (〉100 s), resulting in many dramatic discrepancies between the regional and teleseismic inversions, in particular for the centroid depth. We adopt a spectral element method‐direct solution method hybrid approach to simulate synthetics with the complex source‐side 3‐D structures (bathymetry and water layer in this case) and investigate their roles in the genesis of strong P coda waves. Compared with the 1‐ and 2‐D synthetics, the 3‐D synthetics significantly improve the waveform fits up to 0.1 Hz when the source is placed at the preferred horizontal (~30 km from the trench axis) and vertical (~5 km beneath the ocean bottom) location. The refined location of the earthquake indicates that the plate interface is probably locked at very shallow depths and capable of nucleating strong earthquakes. We highlight the need for considering near trench 3‐D structures in seismic waveform analysis of near trench earthquakes, many of which are tsunamigenic.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-03-10
    Description: The M w 6.0 Mt. Kinabalu earthquake of 2015 was a complete (and deadly) surprise, because it occurred well away from the nearest plate boundary in a region of very low historical seismicit...
    Electronic ISSN: 2196-4092
    Topics: Geosciences
    Published by SpringerOpen
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...