ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Bull. Seism. Soc. Am., Taipei, 3-4, vol. 95, no. 1, pp. 159-172, pp. 2548, (ISSN: 1340-4202)
    Publication Date: 2005
    Keywords: Seismology ; Deconvolution ; Wave form analysis ; Earthquake ; Source parameters ; seismic Moment ; Fault plane solution, focal mechanism ; Zahradnik ; G-Akis ; correct ; like ; this! ; BSSA
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Journal of Seismology, Taipei, 3-4, vol. 8, no. 2, pp. 247-257, pp. 2548, (ISSN: 1340-4202)
    Publication Date: 2004
    Keywords: Earthquake ; swarm ; Seismology ; Modelling ; Synthetic seismograms ; Zahradnik ; Jansky ; JOSE
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-10-01
    Description: Northeast India has been subjected to extensive compressional forces, mainly in north–south and east–west directions resulting from the convergence of the Indian plate with the Eurasian and Burmese plates, respectively. The area is characterized as one of the most seismically active regions of the world; however, the lower Assam valley’s microseismicity has not been monitored and studied intensively by a dense seismic network during the past. During this study, a seismic network of 76 stations was deployed in northeastern India for one year. Hundreds of microearthquakes were recorded. The most accurately located events, moment tensor solutions, and focal mechanisms were used in order to define the seismotectonic and stress regime in the area.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-01
    Description: The Mw6.4 earthquake sequence of 2015 in western Greece is analyzed using seismic data. Multiple-point source modeling, nonlinear slip-patch and linear-slip inversions reveal a coherent rupture image with directivity towards the south-west and several moment-release episodes, reflected in the complex aftershock distribution. The key feature is that the 2015 earthquake ruptured a strong asperity, which was left unbroken in between two large subevents of the Mw6.2 Lefkada doublet in 2003. This finding and the well-analyzed Cephalonia earthquake sequence of 2014 provide strong evidence of segmentation of the major dextral Cephalonia-Lefkada Transform Fault (CTF), being related to extensional duplex transform zones. We propose that the duplexes extend further to the north, and that the CTF runs parallel to the western coast of Lefkada and Cephalonia islands, considerably closer to the inhabited islands than previously thought. Generally, this study demonstrates faulting complexity across short-time scales (earthquake doublets) and long-time scales (seismic gaps).
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-04
    Description: The 2008 M w = 6.4 Movri earthquake ruptured a NNE right lateral strike-slip fault about 30 km south of the city of Patras. Although some strike-slip activity on minor faults was known, there was no tectonic evidence of large scale NS striking fault and such a large event was not anticipated. Following the event, a network of six stations was installed for 4 months in the epicentral area in order to monitor aftershocks and in particular the northern part of the rupture area closest to the city of Patras. We combine these new aftershock observations with GPS measurements of an already existing geodetic network in the area performed just after the earthquake, as well as with SAR interferograms, together with already published source studies, in order to refine already proposed models of this event. The combined data set allows defining much more accurately the lateral and vertical limits of the rupture. Its length inferred from geodesy is ~15 km and its modelled upper edge ~17 km. The seismic moment then constrains the lower edge to coincide, within a few kilometres, with the Moho interface. The absence of seismicity in the shallow crust above the co-seismic fault is interpreted as a result of the decoupling effect of possible presence of salt layers above the rupture area, near 14 to 16 km in depth, which favours our interpretation of an immature strike-slip fault system, compatible with the absence of surface ruptures. The immature character of this large crustal fault is further suggested by the high variability of focal mechanisms and of fault geometries deduced from aftershock clusters, in the strike direction. Its geometry and mechanism is consistent with the crustal shear, striking NNE, revealed by GPS in this region. This shear and faulting activity might be generated by the differential slip rate on the subduction interface, 50 km to the south, leading to a north-northeastward propagating strike-slip fault zone. The wide extension of the aftershock distribution forming a NNE alignment, beyond the rupture area towards the north, suggests a localization process of the shear strain, which could be the preliminary stage of fault propagation further to the NNE. An alternative speculative model for this regional stress could be the existence of a well-developed NNE striking shear zone within the uppermost mantle, marking at depth the southward propagation of the northern branch of the North Anatolian fault. Both models may not be exclusive of each other, and in fact their sources may be mechanically interdependent.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-10-01
    Description: The Albanides represent a complex orogen made up of a heterogeneous tectonic nappe pile of Paleozoic, Mesozoic, and Cenozoic domains. Albania is tectonically active, and moderate to strong earthquakes have occurred in the past. However, abundant microseismicity has not been monitored and studied by a dense seismic network. During this study, a seismic network of 40 stations was deployed in southern Albania for one year. A total of 2113 microearthquakes were well located. The most accurately located events and 810 focal mechanisms were used in order to define the seismotectonics and the stress pattern in the area. Results indicate that thrust and strike-slip faulting both exist in southwestern Albania, suggesting a continuation of the complex tectonic setting of the neighboring northwestern Greece to the north.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-07-27
    Description: The Corinth Rift in Central Greece has been studied extensively during the past decades, as it is one of the most seismically active regions in Europe. It is characterized by normal faulting and extension rates between 6 and 15 mm yr –1 in an approximately N10E° direction. On 2013 May 21, an earthquake swarm was initiated with a series of small events 4 km southeast of Aigion city. In the next days, the seismic activity became more intense, with outbursts of several stronger events of magnitude between 3.3 and 3.7. The seismicity migrated towards the east during June, followed by a sudden activation of the western part of the swarm on July 15th. More than 1500 events have been detected and manually analysed during the period between 2013 May 21 and August 31, using over 15 local stations in epicentral distances up to 30 km and a local velocity model determined by an error minimization method. Waveform similarity-based analysis was performed, revealing several distinct multiplets within the earthquake swarm. High-resolution relocation was applied using the double-difference algorithm HypoDD, incorporating both catalogue and cross-correlation differential traveltime data, which managed to separate the initial seismic cloud into several smaller, densely concentrated spatial clusters of strongly correlated events. Focal mechanism solutions for over 170 events were determined using P -wave first motion polarities, while regional waveform modelling was applied for the calculation of moment tensors for the 18 largest events of the sequence. Selected events belonging to common spatial groups were considered for the calculation of composite mechanisms to characterize different parts of the swarm. The solutions are mainly in agreement with the regional NNE–SSW extension, representing typical normal faulting on 30–50° north-dipping planes, while a few exhibit slip in an NNE–SSW direction, on a roughly subhorizontal plane. Moment magnitudes were calculated by spectral analysis of S waves, yielding b -values between 1.1 and 1.2 in their frequency–magnitude distribution. The seismic moment release history indicates swarm-like activity during the first phase, which could have acted as a preparatory stage for the second phase (after 12 July) that presented a more typical main-shock–aftershock behaviour. The spatiotemporal analysis reveals that the swarm has occurred in a volume that is likely related with the extension at depth of the NNE-dipping Pirgaki normal fault, outcropping ~8 km to the south. The slow velocity of eastward migration of the epicentres during June implies triggering by fluids. The situation appears different in the second phase of the sequence, which was probably triggered by a build-up of stress during the first one. The relatively deep hypocentres of the 2013 swarm, compared to the shallower seismic layer within the rift, and their coincidence with the steeply dipping Pirgaki fault, favour an immature rift detachment model. Previous results from instrumental data indicate that approximately the same region had been activated during July–August 1991. The availability of the dense permanent seismological network data thus allowed for a detailed analysis of this crisis, a better understanding of its mechanical context and of the earlier events.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-01-15
    Description: With different styles of faulting, the eastern Ionian Sea is an ideal natural laboratory to investigate interactions between adjacent faults during strong earthquakes. The 2018 Mw 6.8 Zakynthos earthquake, well recorded by broadband and strong-motion networks, provides an opportunity to resolve such faulting complexity. Here, we focus on waveform inversion and backprojection of strong-motion data, partly checked by coseismic Global Navigation Satellite System data. We show that the region is under subhorizontal southwest–northeast compression, enabling mixed thrust faulting and strike-slip (SS) faulting. The 2018 mainshock consisted of two fault segments: a low-dip thrust, and a dominant, moderate-dip, right-lateral SS, both in the crust. Slip vectors, oriented to southwest, are consistent with plate motion. The sequence can be explained in terms of trench-orthogonal fractures in the subducting plate and reactivated faults in the upper plate. The 2018 event, and an Mw 6.6 event of 1997, occurred near three localized swarms of 2016 and 2017. Future numerical models of the slab deformation and ocean-bottom seismometer observations may illuminate possible relations among earthquakes, swarms, and fluid paths in the region.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-05-12
    Description: In spite of the fact that the great majority of seismic tsunami is generated in ocean domains, smaller basins like the Ionian Sea sometimes experience this phenomenon. In this investigation, we study the tsunami hazard associated with the Ionian Sea fault system. A scenario-based method is used to provide an estimation of the tsunami hazard in this region for the first time. Realistic faulting parameters related to four probable seismic sources, with tsunami potential, are used to model expected coseismic deformation, which is translated directly to the water surface and used as an initial condition for the tsunami propagation. We calculate tsunami propagation snapshots and mareograms for the four seismic sources in order to estimate the expected values of tsunami maximum amplitudes and arrival times at eleven tourist resorts along the Ionian shorelines. The results indicate that, from the four examined sources, only one possesses a seismic threat causing wave amplitudes up to 4 m at some tourist resorts along the Ionian shoreline.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-03-01
    Print ISSN: 0040-1951
    Electronic ISSN: 1879-3266
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...