ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-01
    Description: A seasonally forced 1/12° global ocean/sea ice simulation is used to characterize the spatiotemporal inverse cascade of kinetic energy (KE). Nonlinear scale interactions associated with relative vorticity advection are evaluated using cross-spectral analysis in the frequency–wavenumber domain from sea level anomaly (SLA) time series. This analysis is applied within four eddy-active midlatitude regions having large intrinsic variability spread over a wide range of scales. Over these four regions, mesoscale surface KE is shown to spontaneously cascade toward larger spatial scales—between the deformation scale and the Rhines scale—and longer time scales (possibly exceeding 10 years). Other nonlinear processes might have to be invoked to explain the longer time scales of intrinsic variability, which have a substantial surface imprint at midlatitudes. The analysis of a fully forced 1/12° hindcast shows that low-frequency and synoptic atmospheric forcing barely affects this inverse KE cascade. The inverse cascade is also at work in a 1/4° simulation, albeit with a weaker intensity, consistent with the weaker intrinsic variability found at this coarser resolution. In the midlatitude North Pacific, the spatiotemporal cascade transfers KE from high-frequency frontal Rossby waves (FRWs), probably generated by baroclinic instability, toward the lower-frequency, westward-propagating mesoscale eddy (WME) field. The WMEs provide local gradients of potential vorticity that support these short Doppler-shifted FRWs. FRWs have periods shorter than 2 months and might be subsampled by altimetric observations, perhaps explaining why the temporal inverse cascade deduced from high-resolution models and mapped altimeter products can be quite different. The nature of the nonlinear interactions between FRWs and WMEs remains unclear but might involve wave turbulence processes.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-22
    Description: This study investigates the origin and features of interannual–decadal Atlantic meridional overturning circulation (AMOC) variability from several ocean simulations, including a large (50 member) ensemble of global, eddy-permitting (1/4°) ocean–sea ice hindcasts. After an initial stochastic perturbation, each member is driven by the same realistic atmospheric forcing over 1960–2015. The magnitude, spatiotemporal scales, and patterns of both the atmospherically forced and intrinsic–chaotic interannual AMOC variability are then characterized from the ensemble mean and ensemble spread, respectively. The analysis of the ensemble-mean variability shows that the AMOC fluctuations north of 40°N are largely driven by the atmospheric variability, which forces meridionally coherent fluctuations reaching decadal time scales. The amplitude of the intrinsic interannual AMOC variability never exceeds the atmospherically forced contribution in the Atlantic basin, but it reaches up to 100% of the latter around 35°S and 60% in the Northern Hemisphere midlatitudes. The intrinsic AMOC variability exhibits a large-scale meridional coherence, especially south of 25°N. An EOF analysis over the basin shows two large-scale leading modes that together explain 60% of the interannual intrinsic variability. The first mode is likely excited by intrinsic oceanic processes at the southern end of the basin and affects latitudes up to 40°N; the second mode is mostly restricted to, and excited within, the Northern Hemisphere midlatitudes. These features of the intrinsic, chaotic variability (intensity, patterns, and random phase) are barely sensitive to the atmospheric evolution, and they strongly resemble the “pure intrinsic” interannual AMOC variability that emerges in climatological simulations under repeated seasonal-cycle forcing. These results raise questions about the attribution of observed and simulated AMOC signals and about the possible impact of intrinsic signals on the atmosphere.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2020-07-30
    Description: Small-scale ocean dynamics around New Caledonia (22∘ S) in the southwest Pacific Ocean occur in regions with substantial mesoscale eddies, complex bathymetry, complex intertwined currents, islands and strong internal tides. Using second-order structure functions applied to observational acoustic Doppler current profiler (ADCP) and thermosalinograph (TSG) datasets, these small-scale dynamics are characterised in the range of scales of 3–100 km in order to determine the turbulent regime at work. A Helmholtz decomposition is used to analyse the contribution of rotational and divergent motions. A surface-intensified regime is shown to be at work south and east of New Caledonia, involving substantial rotational motions such as submesoscale structures generated by mixed layer instabilities and frontogenesis. This regime is, however, absent north of New Caledonia, where mesoscale eddies are weaker and surface available potential energy is smaller at small scales. North of New Caledonia and below 200 m, in the regions south and east of New Caledonia, the dynamical regime at work could be explained by stratified turbulence as divergent and rotational motions have similar contribution, but weakly nonlinear interaction between inertia–gravity waves is also possible as structure functions get close to the empirical spectrum model for inertia–gravity waves. Seasonal variations of the available potential energy reservoir, associated with a change in the vertical profile rather than in horizontal density variance, suggest that submesoscale motions would also seasonally vary around New Caledonia. Overall, a loss of geostrophic balance is likely to occur at scales smaller than 10 km, where the contribution of divergent motions become significant.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-06-08
    Description: A global 1/4° ocean/sea ice 50-member ensemble simulation is used to disentangle the low-frequency imprints of the atmospherically forced oceanic variability and of the chaotic intrinsic oceanic variability (IOV) on the large-scale (10° × 10°) ocean heat content (OHC) between 1980 and 2010. The IOV explains most of the interannual-to-decadal large-scale OHC variance over substantial fractions of the global ocean area that increase with depth: 9%, 22%, and 31% in the 0–700 m, 700–2000 m and 2000 m bottom layers, respectively. Such areas concern principally eddy-active regions, mostly found in the Southern Ocean and in western boundary current extensions, and also concern the subtropical gyres at intermediate and deep levels. The oceanic chaos may also induce random multidecadal fluctuations so that large-scale regional OHC trends computed on the 1980–2010 period cannot be unambiguously attributed to the atmospheric forcing in several oceanic basins at various depths. These results are likely to raise detection and attribution issues from real observations. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-12
    Description: In high-resolution ocean general circulation models (OGCMs), as in process-oriented models, a substantial amount of interannual to decadal variability is generated spontaneously by oceanic nonlinearities: that is, without any variability in the atmospheric forcing at these time scales. The authors investigate the temporal and spatial scales at which this intrinsic oceanic variability has the strongest imprints on sea level anomalies (SLAs) using a ° global OGCM, by comparing a “hindcast” driven by the full range of atmospheric time scales with its counterpart forced by a repeated climatological atmospheric seasonal cycle. Outputs from both simulations are compared within distinct frequency–wavenumber bins. The fully forced hindcast is shown to reproduce the observed distribution and magnitude of low-frequency SLA variability very accurately. The small-scale (L 〈 6°) SLA variance is, at all time scales, barely sensitive to atmospheric variability and is almost entirely of intrinsic origin. The high-frequency (mesoscale) part and the low-frequency part of this small-scale variability have almost identical geographical distributions, supporting the hypothesis of a nonlinear temporal inverse cascade spontaneously transferring kinetic energy from high to low frequencies. The large-scale (L 〉 12°) low-frequency variability is mostly related to the atmospheric variability over most of the global ocean, but it is shown to remain largely intrinsic in three eddy-active regions: the Gulf Stream, Kuroshio, and Antarctic Circumpolar Current (ACC). Compared to its ¼° predecessor, the authors’ ° OGCM is shown to yield a stronger intrinsic SLA variability, at both mesoscale and low frequencies.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-01
    Description: Motivated by the potential of oceanic mesoscale eddies to drive intrinsic low-frequency variability, this paper examines geostrophic turbulence in the frequency–wavenumber domain. Frequency–wavenumber spectra, spectral fluxes, and spectral transfers are computed from an idealized two-layer quasigeostrophic (QG) turbulence model, a realistic high-resolution global ocean general circulation model, and gridded satellite altimeter products. In the idealized QG model, energy in low wavenumbers, arising from nonlinear interactions via the well-known inverse cascade, is associated with energy in low frequencies and vice versa, although not in a simple way. The range of frequencies that are highly energized and engaged in nonlinear transfer is much greater than the range of highly energized and engaged wavenumbers. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing and friction playing important but secondary roles. In the high-resolution ocean model, nonlinearities also generally drive kinetic energy to low frequencies as well as to low wavenumbers. Implications for the maintenance of low-frequency oceanic variability are discussed. The cascade of surface kinetic energy to low frequencies that predominates in idealized and realistic models is seen in some regions of the gridded altimeter product, but not in others. Exercises conducted with the general circulation model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies between the direction of the frequency cascade in models versus gridded altimeter maps seen in some regions. Of course, another potential reason for the discrepancy is missing physics in the models utilized here.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-07-01
    Description: The low-frequency variability of the Atlantic meridional overturning circulation (AMOC) is investigated from 2, ¼°, and ° global ocean–sea ice simulations, with a specific focus on its internally generated (i.e., “intrinsic”) component. A 327-yr climatological ¼° simulation, driven by a repeated seasonal cycle (i.e., a forcing devoid of interannual time scales), is shown to spontaneously generate a significant fraction R of the interannual-to-decadal AMOC variance obtained in a 50-yr “fully forced” hindcast (with reanalyzed atmospheric forcing including interannual time scales). This intrinsic variance fraction R slightly depends on whether AMOCs are computed in geopotential or density coordinates, and on the period considered in the climatological simulation, but the following features are quite robust when mesoscale eddies are simulated (at both ¼° and ° resolutions); R barely exceeds 5%–10% in the subpolar gyre but reaches 30%–50% at 34°S, up to 20%–40% near 25°N, and 40%–60% near the Gulf Stream. About 25% of the meridional heat transport interannual variability is attributed to intrinsic processes at 34°S and near the Gulf Stream. Fourier and wavelet spectra, built from the 327-yr ¼° climatological simulation, further indicate that spectral peaks of intrinsic AMOC variability (i) are found at specific frequencies ranging from interannual to multidecadal, (ii) often extend over the whole meridional scale of gyres, (iii) stochastically change throughout these 327 yr, and (iv) sometimes match the spectral peaks found in the fully forced hindcast in the North Atlantic. Intrinsic AMOC variability is also detected at multidecadal time scales, with a marked meridional coherence between 35°S and 25°N (15–30 yr periods) and throughout the whole basin (50–90-yr periods).
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-10
    Description: This paper presents the technical implementation of a new, probabilistic version of the NEMO ocean–sea-ice modelling system. Ensemble simulations with N members running simultaneously within a single executable, and interacting mutually if needed, are made possible through an enhanced message-passing interface (MPI) strategy including a double parallelization in the spatial and ensemble dimensions. An example application is then given to illustrate the implementation, performances, and potential use of this novel probabilistic modelling tool. A large ensemble of 50 global ocean–sea-ice hindcasts has been performed over the period 1960–2015 at eddy-permitting resolution (1∕4°) for the OCCIPUT (oceanic chaos – impacts, structure, predictability) project. This application aims to simultaneously simulate the intrinsic/chaotic and the atmospherically forced contributions to the ocean variability, from mesoscale turbulence to interannual-to-multidecadal timescales. Such an ensemble indeed provides a unique way to disentangle and study both contributions, as the forced variability may be estimated through the ensemble mean, and the intrinsic chaotic variability may be estimated through the ensemble spread.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-28
    Description: The processes that contribute to the flat Sea Surface Height (SSH) wavenumber spectral slopes observed in the tropics by satellite altimetry are examined in the tropical Pacific. The tropical dynamics are first investigated with a 1/12° global model. The equatorial region from 10°N–10°S is dominated by Tropical Instability Waves with a peak of energy at 1000km wavelength, strong anisotropy, and a cascade of energy from 600km down to smaller scales. The off-equatorial regions from 10–20° latitude are characterized by a narrower mesoscale range, typical of mid latitudes. In the tropics, the spectral taper window and segment lengths need to be adjusted to include these larger energetic scales. The equatorial and off-equatorial regions of the 1/12° model have surface kinetic energy spectra consistent with quasi-geostrophic turbulence. The balanced component of the dynamics slightly flatten the EKE spectra, but modeled SSH wavenumber spectra maintain a steep slope that does not match the observed altimetric spectra. A second analysis is based on 1/36° high-frequency regional simulations in the western tropical Pacific, with and without explicit tides, where we find a strong signature of internal waves and internal tides that act to increase the smaller-scale SSH spectral energy power and flattening the SSH wavenumber spectra, in agreement with the altimetric spectra. The coherent M2 baroclinic tide is the dominant signal at ~140km wavelength. At short scales, wavenumber SSH spectra are dominated by incoherent internal tides and internal waves which extend up to 200km in wavelength. These incoherent internal waves impact on space scales observed by today's alongtrack altimetric SSH, and also on the future SWOT 2D swath observations, raising the question of altimetric observability of the shorter mesoscale structures in the tropics.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...