ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 28 (1995), S. 4795-4800 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1436-2449
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Summary The rate of homogeneous polymerization of N-dodecylmaleimide (DMIm) with dimethyl 2,2′-azobisisobutyrate depended significantly on the kind of solvents used. The polymerization systems involved ESR-observable propagating poly(DMIm) radical. The rate constants of propagation(kp) and termination(kt) were determined at 50°C in various solvents. The kp value was smaller in aromatic solvents than in aliphatic ones. The Hammett's plot of kp against σ-value of the substituents on the aromatic solvents showed that kp took higher values in the solvents with either electron-accepting or donating substituents. The solvent effects on kp seemed to stem from complexion of poly(DMIm) radical with solvents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The polymerization of methyl N-phenylitaconamate(methyl 2-methylenesuccinanilate (1)) with dimethyl 2,2′-azodiisobutyrate (2) was studied in N,N-dimethylformamide (DMF) kinetically and by means of electron paramagnetic resonance (EPR) spectroscopy. The polymerization rate (Rp) at 55°C is given by the equation: Rp = k[2]0,58 · [1]1,6. The overall activation energy of the polymerization was calculated to be 54,2 kJ/mol. The number-average molecular weight of poly(1) was in the range between 5000 and 17000. From an EPR study, the polymerization system was found to involve the EPR-detectable propagating polymer radical of 1 at practical polymerization conditions. Using the concentration of polymer radicals, the rate constants of propagation (kp) and termination (kt) were determined for 55°C. The rate constant of propagation kp (between 8,4 and 12 L · mol-1 · s-1) tends to somehow increase with increasing monomer concentration. On the other hand, kt (between 1,9. 10-5 L · mol-1 · s-1) increases with decreasing monomer concentration, which results from a considerable dependence of kt on the polymer-chain length. Such monomer-concentration-dependent kp and kt values are responsible for the high dependence of Rp on the monomer concentration. Thermogravimetric results showed that thermal degradation of poly(1) occurs rapidly at temperatures higher than 200°C and the residue at 500°C amounts to 26% of the initial polymer. For the copolymerization of 1 (M1) with styrene (M2) at 55°C in DMF the following copolymerization parameters were found: r1 = 0,52, r2 = 0,31, and Q, e values Q1 = 1,09 and e1 = +0,55.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The copolymerization of diethyl itaconate(1) (M1) and styrene (2) (M2) with dimethyl 2,2′-azoisobutyrate (3) was performed in benzene at 50°C, and the following copolymerization parameters were obtained: r1 = 0,34, r2 = 0,35, Q1 = 0,93 and el = +0,66. The copolymerization system was found to involve ESR1Electron spin resonance.-observed propagating polymer radicals at low monomer feed composition (f2) of 2. The apparent rate constant of termination increased rapidly with f2. The ESR-determined values of the apparent propagation rate constant of the copolymerization were lower than those calculated on the basis of the Mayo-Lewis model, suggesting a significant penultimate effect in the copolymerization. On the other hand, the copolymerization of the 1-SnCl4 complex (M1) and 2 (M2) at 50°C yielded a nearly alternating copolymer independently of the monomer feed composition. The propagating polymer radicals were ESR-observable even up to f2 = 0,8. The ESR-determined apparent rate constant (kp) of propagation showed a maximum near f2 = 0,5. From the relationship between kp and f2, the rate constants of cross-propagations of the present alternating copolymerization were evaluated as k12 = 483 and k21 = 510 L. mol-1 · s-1. Comparison of the k21 value and the reported propagation rate constant (209 L · mol-1 · s-1) of homopolymerization of 2 leads to the conclusion that the alternating copolymerization via free-monomer propagation mechanism originates from a pronounced penultimate effect suppressing homopropagation of 2, but not from enhanced cross-propagation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0025-116X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The copolymerization of N-cyclohexylmaleimide (1) (M1) and bis(2-ethylhexyl) itaconate (2) (M2) with dimethyl 2,2′-azoisobutyrate (3) as an initiator was carried out at 50°C in benzene. Monomer reactivity ratios were estimated as r1 = 0,34 and r2 = 0,38. The copolymerization rate (Rp) and the molecular weight of the resulting copolymer increased with increasing concentration of 1 when the total concentration of comonomers was fixed at 1,00 mol. L-1. Rp was proportional to [3]0,5, indicating a usual bimolecular termination in the copolymerization. An electron spin resonance (ESR) spectrum of the propagating polymer radicals was observable in the actual copolymerization system at 50°C. The spectrum of the copolymerization system is inexplicable in terms of any superposition of spectra observed in the corresponding homopolymerization systems, revealing that some penultimate monomeric unit causes a change in the ESR spectrum, that is, the structure of propagating polymer radical. The apparent rate constant of propagation (kp) and termination (kt) were estimated by ESR. The kp values (1,5-50 L · mol-1 · s-1) are fairly higher than those estimated on the basis of the terminal model, affording another piece of evidence for the penultimate effect. The kt value (1,8-5,4·103 L · mol-1 · s-1) shows a behaviour similar to that of the intrinsic viscosity of the resulting copolymer on varying the monomer feed composition, which seems to reflect diffusion-control of termination reactions.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 153-162 
    ISSN: 0887-624X
    Keywords: radical polymerization ; radical copolymerization ; effect of LiClO4 ; ESR spectrum ; propagation rate constant ; termination rate constant ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effect of LiClO4 on the polymerization of di-2-[2-(2-methoxyethoxy)ethoxy]ethyl itaconate (DMEI) with dimethyl 2,2′-azobisisobutyrate (MAIB) was investigated in methyl ethyl ketone (MEK) kinetically and by ESR. The polymerization rate (Rp) at 50°C, where the concentrations of DMEI and MAIB were 1.00 and 5.00 × 10-2 mol/L, increased with increasing [LiClO4]. Marked acceleration was observed at higher [LiClO4]s than 1.0 mol/L. The molecular weight of resulting polymer (ca. 10,000) was relatively insensitive to [LiClO4], indicating occurrence of chain transfer. IR analysis of mixtures of LiClO4/DMEI and LiClO4/poly(DMEI) indicated complexation of LiClO4 with DMEI and its polymer. The rate constants of propagation (kp) and termination (kt) were determined by ESR. kp (1.7-10.5 L/mol s at 50°C) increased with [LiClO4]. kt (5.2-1.0 × 104 L/mol s at 50°C) showed remarkable decrease at higher [LiClO4]s than 1.0 mol/L. Rp of polymerization of equimolar complex of LiClO4/DMEI with MAIB at 50°C in MEK was expressed by Rp = k[MAIB]0.5[DMEI]2.4. kp increased and kt decreased with [DMEI]. The activation energies of overall polymerization, propagation and termination were estimated to be 34.5, 8.0, and 59.4 kJ/mol. Copolymerization of DMEI with styrene was also profoundly affected by the presence of LiClO4. Such large effects of LiClO4 on the homo- and copolymerization of DMEI are explicable in term of association of LiClO4-complexed DMEI monomers. © 1997 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 33 (1995), S. 2865-2873 
    ISSN: 0887-624X
    Keywords: fumarate ; radical polymerization ; addition-abstraction mechanism ; ESR spectrum ; propagation rate constant ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The radical polymerization behavior of ethyl ortho-formyl-phenyl fumarate (EFPF) using dimethyl 2,2′-azobisisobutyrate (MAIB) as initiator was studied in benzene kinetically and ESR spectroscopically. The polymerization rate (Rp) at 60°C was given by Rp = k[MAIB]0.76[EFPF]0.56. The number-average molecular weight of poly(EFPF) was in the range of 1600-2900. EFPF was also easily photopolymerized at room temperature without any photosensitizer probably because of the photosensitivity of the formyl group of monomer. Analysis of 1H- and 13C-NMR spectra of the resulting polymer revealed that the radical polymerization of EFPF proceeds in a complicated manner involving vinyl addition and intramolecular hydrogen-abstraction. The polymerization system was found to involve ESR-observable poly(EFPF) radicals under the actual polymerization conditions. ESR-determined rate constant (2.4-4.0 L/mol s) of propagation at 60°C increased with decreasing monomer concentration, which is mainly responsible for the observed low de-pendency of Rp on the EFPF concentration. Copolymerizations of EFPF with some vinyl monomers were also examined. © 1995 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1449-1455 
    ISSN: 0887-624X
    Keywords: radical copolymerization ; p-t-butoxystyrene ; dibutyl maleate ; penultimate effect ; ESR ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The copolymerization of p-tert-butoxystyrene (TBOSt) (M1) and di-n-butyl maleate (DBM) (M2) with dimethyl 2,2′-azobisisobutyrate (MAIB) in benzene at 60°C was studied kinetically and by means of ESR spectroscopy. The monomer reactivity ratios were determined to be r1 = 2.3 and r2 = 0 by a curve-fitting method. The copolymerization system was found to involve ESR-observable propagating polymer radicals under practical copolymerization conditions. The apparent rate constants of propagation (kp) and termination (kt) at different feed compositions were determined by ESR. From the relationship of kp and f1 (f1 = [M1]/([M1] + [M2])) based on a penultimate model, the rate constants of five propagations of copolymerization were evaluated as follows; k111 = 140 L/mol s, k211 = 3.5 L/mol s, k112 = 61 L/mol s, k212 = 1.5 L/mol s, and k121 = 69 L/mol s. Thus, a pronounced penultimate effect was predicted in the copolymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1449-1455, 1998
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 34 (1996), S. 3121-3130 
    ISSN: 0887-624X
    Keywords: radical cyclopolymerization ; copolymerization ; effect of SnCl4 ; N-allyl-N-phenylmethacrylamide ; N-allyl-N-phenylacrylamide ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The effects of SnCl4 on the radical polymerization of N-allyl-N-phenylmethacrylamide (APM) and N-allyl-N-phenylacrylamide (APA) were investigated. The polymerizations of APM and APA with dimethyl 2,2-azobisisobutyrate (MAIB) were carried out at 50°C in benzene at various concentrations (0-1.0 mol/L) of SnCl4. The polymerization rates showed a maximum on varying the SnCl4 concentration, while the molecular weights of the resulting poly(APM) and poly(APA) were decreased with increasing SnCl4 concentration. In both systems, the degree of cyclization of polymers were decreased with the SnCl4 concentration. From the IR results, the cyclic structure of the resulting poly(APM)s was confirmed to be five-membered, whereas poly(APA)s contained not only five-membered but also six-membered rings. The 1H-NMR examination on the interactions of APM and APA with SnCl4 revealed that these monomers form 1:1 and 2:1 complexes with SnCl4 with fairly large stability constants. Copolymerizations of APM (M1) with methyl methacrylate (MMA) and styrene (St) (M2) were investigated at 60°C in benzene in the absence of SnCl4. APM units were found to be incorporated exclusively as five-membered rings in the resulting copolymer. Monomer reactivity ratios were estimated to be r1 = 0.29, r2 = 4.88 for APM/MMA and r1 = 0.66, r2 = 5.39 for APM/St. The presence of equimolar (to APM) SnCl4 was found to enhance the reactivity of APM toward poly(MMA) radical; r1 = 0.24, r2 = 2.56. © 1996 John Wiley & Sons, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 1891-1900 
    ISSN: 0887-624X
    Keywords: radical polymerization ; steric effect ; ESR spectrum ; MALDI-TOF mass spectrum ; propagation rate constant ; termination rate constant ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The polymerization of benzyl N-(2,6-dimethylphenyl)itaconamate (BDMPI) with benzoyl peroxide (BPO) in N,N-dimethylformamide (DMF) was studied kinetically by ESR. The polymerization rate (Rp) at 70°C was given by Rp = k[BPO]0.78[BDMPI]1.1. The overall activation energy of polymerization was determined to be 83.7 kJ/mol. The number-average molecular weight of poly(BDMPI) was in the range of 1500-2000 by gel permeation chromatography. From the ESR study, the polymerization system was found to involve ESR-observable propagating radicals of BDMPI under practical polymerization conditions. Using the polymer radical concentration by ESR, the rate constants of propagation (kp) and termination (kt) were determined in the temperature range of 50-70°C. The kp value seemed dependent on the chain-length of propagating radical. The analysis of polymers by the MALDI-TOF mass spectrometry suggested that most of the resulting polymers contain the dimethylamino terminal group. The copolymerization of BDMPI (M1) and styrene (M2) at 50°C in DMF gave the following copolymerization parameters; r1 = 0.49, r2 = 0.26, Q1 = 1.2, and e1 = +0.63. The thermal behavior of poly(BDMPI) was examined by dynamic thermogravimetry and differential scanning calorimetry. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1891-1900, 1997
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...