ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 4 (1970), S. 562-568 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 51 (1979), S. 1998-2000 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-072X
    Keywords: Key words Particulate methane monooxygenase ; Trichloroethylene ; Dichloromethane ; Inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Whole-cell assays were used to measure the effect of dichloromethane and trichloroethylene on methane oxidation by Methylosinus trichosporium OB3b synthesizing the membrane-associated or particulate methane monooxygenase (pMMO). For M. trichosporium OB3b grown with 20 μM copper, no inhibition of methane oxidation was observed in the presence of either dichloromethane or trichloroethylene. If 20 mM formate was added to the reaction vials, however, methane oxidation rates increased and inhibition of methane oxidation was observed in the presence of dichloromethane and trichloroethylene. In the presence of formate, dichloromethane acted as a competitive inhibitor, while trichloroethylene acted as a noncompetitive inhibitor. The finding of noncompetitive inhibition by trichloroethylene was further examined by measuring the inhibition constants K iE and K iES. These constants suggest that trichloroethylene competes with methane at some sites, although it can bind to others if methane is already bound. Whole-cell oxygen uptake experiments for active and acetylene-treated cells also showed that provision of formate could stimulate both methane and trichloroethylene oxidation and that trichloroethylene did not affect formate dehydrogenase activity. The finding that different chlorinated hydrocarbons caused different inhibition patterns can be explained by either multiple substrate binding sites existing in pMMO or multiple forms of pMMO with different activities. The whole-cell analysis performed here cannot distinguish between these models, and further work should be done on obtaining active preparations of the purified pMMO.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 172 (1999), S. 393-400 
    ISSN: 1432-072X
    Keywords: Key words Methanotrophs ; Bioremediation ; Halogenated hydrocarbons ; Kinetics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The degradation kinetics of ten halogenated hydrocarbons by Methylomicrobium album BG8 expressing particulate methane monooxygenase (pMMO) and the inhibitory effects of these compounds on microbial growth and whole-cell pMMO activity were measured. When M. album BG8 was grown with methane, growth was completely inhibited by dichloromethane (DCM), bromoform (BF), chloroform (CF), vinyl chloride (VC), 1,1-dichloroethylene (1,1-DCE), and cis-dichloroethylene (cis-DCE). Trichloroethylene (TCE) partially inhibited growth on methane, while dibromomethane (DBM), trans-dichloroethylene (trans-DCE), and 1,1,1-trichloroethane (1,1,1-TCA) had no effect. If the cells were grown with methanol, DCM, BF, CF, and 1,1-DCE completely inhibited growth, while VC, trans-DCE, TCE, and 1,1,1-TCA partially inhibited growth. Both DBM and cis-DCE had no effect on growth with methanol. Whole-cell pMMO activity was also affected by these compounds, with all but 1,1,1-TCA, DCM, and DBM reducing activity by more than 25%. DCM, DBM, VC, trans-DCE, cis-DCE, 1,1-DCE, and TCE were degraded and followed Michaelis-Menten kinetics. CF, BF, and 1,1,1-TCA were not measurably degraded. These results suggested that the products of DCM, TCE, VC, and 1,1-DCE inactivated multiple enzymatic processes, while trans-DCE oxidation products were also toxic but to a lesser extent. cis-DCE toxicity, however, appeared to be localized to pMMO. Finally, DBM and 1,1,1-TCA were not inhibitory, and CF and BF were themselves toxic to M. album BG8. Based on these results, the compounds could be separated into four general categories, namely (1) biodegradable with minimal inactivation, (2) biodegradable with substantial inactivation, (3) not biodegradable with minimal inactivation, and (4) not biodegradable but substantial inactivation of cell activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 189 (2000), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The intact phospholipid profiles (IPPs) of seven species of methanotrophs from all three physiological groups, type I, II and X, were determined using liquid chromatography/electrospray ionization/mass spectrometry. In these methanotrophs, two major classes of phospholipids were found, phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) as well as its derivatives phosphatidylmethylethanolamine (PME) and phosphatidyldimethylethanolamine (PDME). Specifically, the type I methanotrophs, Methylomonas methanica, Methylomonas rubra and Methylomicrobium album BG8 were characterized by PE and PG phospholipids with predominantly C16:1 fatty acids. The type II methanotrophs, Methylosinus trichosporium OB3b and CSC1 were characterized by phospholipids of PG, PME and PDME with predominantly C18:1 fatty acids. Methylococcus capsulatus Bath, a representative of type X methanotrophs, contained mostly PE (89% of the total phospholipids). Finally, the IPPs of a recently isolated acidophilic methanotroph, Methylocella palustris, showed it had a preponderance of PME phospholipids with 18:1 fatty acids (94% of total). Principal component analysis showed these methanotrophs could be clearly distinguished based on phospholipid profiles. Results from this study suggest that IPP can be very useful in bacterial chemotaxonomy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 186 (2000), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The rate and products of trichloroethylene (TCE) oxidation by Methylomicrobium album BG8 expressing membrane-associated methane monooxygenase (pMMO) were determined using 14C radiotracer techniques. [14C]TCE was degraded at a rate of 1.24 nmol (min mg protein)−1 with the initial production of glyoxylate and then formate. Radiolabeled CO2 was also found after incubating M. album BG8 for 5 h with [14C]TCE. Experiments with purified pMMO from Methylococcus capsulatus Bath showed that TCE could be mineralized to CO2 by pMMO. Oxygen uptake studies verified that M. album BG8 could oxidize glyoxylate and that pMMO was responsible for the oxidation based on acetylene inactivation studies. Here we propose a pathway of TCE oxidation by pMMO-expressing cells in which TCE is first converted to TCE-epoxide. The epoxide then spontaneously undergoes HCl elimination to form glyoxylate which can be further oxidized by pMMO to formate and CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 187 (2000), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Studies were performed to determine if the growth of Methylomicrobium album BG8 on methanol could be enhanced through the provision of chloromethane. M. album BG8 was found to be able to oxidize chloromethane via the particulate methane monooxygenase with an apparent Ks of 11±3 μM and Vmax of 15±0.6 nmol (min mg protein)−1. When up to 2.6 mM chloromethane was provided with 5 mM methanol, methanotrophic growth was significantly enhanced in comparison to the absence of chloromethane, indicating that methanotrophs can utilize chloromethane to support growth, although it could not serve as a sole growth substrate. [14C]chloromethane was found to be oxidized to [14C]CO2 as well as incorporated into biomass. These results indicate that reactions previously thought to be cometabolic may actually provide some benefit to methanotrophs and that these cells can use multiple compounds to enhance growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 51 (1959), S. 168-168 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial & engineering chemistry 50 (1958), S. 1615-1620 
    ISSN: 1520-5045
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Electrochimica Acta 27 (1982), S. 587-589 
    ISSN: 0013-4686
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...