ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Environmental Pollution 86 (1994), S. 129-134 
    ISSN: 0269-7491
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science 79 (1991), S. 31-36 
    ISSN: 0168-9452
    Keywords: NADH oxidase ; auxin ; plant growth ; triacontanol
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 107 (1999), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Field-grown spring wheat (Triticum aestivum L. cv. Dragon) was exposed to ambient and elevated CO2 concentrations (1.5 and 2 times ambient) in open-top chambers. Contents of non-structural carbohydrates were analysed enzymatically in leaves, stems and ears six times during the growing season. The impact of elevated CO2 on wheat carbohydrates was non-significant in most harvests. However, differences in the carbohydrate contents due to elevated CO2 were found in all plant compartments. Before anthesis, at growth stage (GS) 30 (the stem is 1 cm to the shoot apex), the plants grown in elevated CO2 contained significantly more water soluble carbohydrates (WSC), fructans, starch and total non-structural carbohydrates (TNC) in the leaves in comparison with the plants grown in ambient CO2. It is hypothesised that the plants from the treatments with elevated CO2 were sink-limited at GS30. After anthesis, the leaf WSC and TNC contents of the plants from elevated CO2 started to decline earlier than those of the plants from ambient CO2. This may indicate that the leaves of plants grown in the chambers with elevated CO2 senesced earlier. Elevated CO2 accelerated grain development: 2 weeks after anthesis, the plants grown in elevated CO2 contained significantly more starch and significantly less fructans in the ears compared to the plants grown in ambient CO2. Elevated CO2 had no effect on ear starch and TNC contents at the final harvest. Increasing the CO2 concentration from 360 to 520 μmol mol−1 had a larger effect on wheat non-structural carbohydrates than the further increase from 520 to 680 μmol mol−1. The results are discussed in relation to the effects of elevated CO2 on yield and yield components.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Lycopersicon ; Phetorespiration ; Photosynthesis ; Triacontanol ; Zea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Tomato (C3-plants) and maize (C4-plants) were grown in a nutrient solution to which triacontanol was added twice a week. After about 4 weeks the triacontanol treatment caused a significant increase in the dry weight of the tomato plants. Leaf area and dry weight measurements of tomato leaves at different stages of development showed that the largest increase in growth was obtained when triacontanol treatment was initiated before bud formation. In maize, no effect of the triacontanol treatment on dry wieght was observed. Photosynthesis was inhibited by 27% in young leaves from triacontanol-treated tomato plants and 39% in the controls, when the oxygen concentration was raised from 2% to 21%. In maize no change in photosynthesis could be observed, neither after altered oxygen concentration nor after triacontanol treatment. The difference in the response of C3- and C4-plants to triacontanol indicates that it regulates processes related to photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: P700 oxydation ; Photosystem I ; Chlorophyll ; Chloroplasts ; Electron transport ; Hordeum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The development of photosystem I activity of plastids isolated from greening barley (Hordeum distichum, L.) leaves was studied. The electron transport activity in photosystem I was measured as anthraquinone-mediated oxygen uptake and as light induced absorbance changes of the reaction centre molecule P700. P700 oxidation was observed after one hour of greening though an electron transport leading to oxygen uptake was observed after 30 minutes. Phenazine methosulphate had no effect on the oxidation of P700 until after four hours of greening. The ratio chlorophyll/P700 decreased from about 2300/l at one hour to 640/l at sixteen hours of greening. The light intensity dependence of the electron transport of photosystem I showed that the photosynthetic units gradually increased in size as the greening proceeded. The increase of the rate of the oxygen uptake, calculated on plastid basis, decreased after eight hours while the P700 content, calculated on plastid basis, increased continuously between three and sixteen hours. Chromatographic separations and fluorimetric analyses of the chlorophyll pigments showed that the reaction centre molecule could not be protochlorophyllide or chlorophyllide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Water, air & soil pollution 85 (1995), S. 111-122 
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Present ambient concentrations of ozone decrease the yield of several important crops. However, plants differ in sensitivity to ozone; for example wheat, Triticum aestivum L., is more sensitive than barley, Hordeum vulgare L. At present no general explanation for the inter- and intraspecific variation in ozone sensitivity exists. During recent years there have been several signs that forests are threatened by human activities and ozone is considered important. Nevertheless, the role of ozone in forest decline is still unclear, although several investigations of young conifers have shown that ozone can reduce net photosynthesis, disturb carbon allocation and reduce growth. Furthermore, little information exists on the effects of ozone on adult trees. This paper discusses present knowledge in relation to 1) dose-regulating factors, such as stomatal conductance, aerodynamics and roughness of surfaces and 2) response-regulating factors, such as chemical defence against oxidative stress, implementation of growth potential and developmental stage. An attempt to relate plant response to ozone to differences in plant strategies is made.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-2932
    Keywords: Tropospheric ozone ; drought tolerance ; stress inteeractions ; forest decline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Young trees of Norway spruce (Picea abies (L.) Karst.) were grown in 120 litre pots under two different ozone levels in open-top chambers for three seasons, 1992–1994. The ozone treatments were charcoal filtered air (CF, average 24 h seasonal mean 6.5 ppb) and non-filtered air with extra ozone aiming to track 1.5 times ambient (NF+, average seasonal mean 34 ppb). In addition, half of the spruce trees in Aug – Sep each season recieved a drought period of between five and seven weeks. The remaining half were kept well-watered. The soil water content, the needle water potentials, and the gas exchange as well as the chamber micro climate were measured before, during and after the drought period. Furthermore, the growth of the trees was measured as biomass increase. During the 1993 drought period, where the trees experienced a moderate drought stress, the trees grown in NF+ consumed soil water faster and showed a higher needle conductance compared to CF. However, no negative effects were found on needle water potential or growth. During the more severe 1994 drought stress period we did not find any differences between the two ozone treatments in soil water consumption, needle conductance or needle water potential. There was a significant negative effect of the high ozone treatment on tree biomass of the well-watered trees. Total plant biomass was reduced 18 % and stem biomass was reduced as much as 28 %. The negative effect of ozone on tree biomass was much smaller for the droughted trees.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-2932
    Keywords: ozone ; visible injury ; clover ; leaves ; AOT
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract In 1992 a cooperative project, Clover Sweden, was initiated. The aim was to study if subterranean clover could be used as a bioindicator in the different climate zones in Sweden by studying the impact of ambient ozone concentrations on this species in different parts of the country during three consecutive summer seasons. Plants of subterranean clover, Trifolium subterraneum, L., were exposed to ambient air at 24 sites from north to south Sweden. The project was designed to be compatible with the international programme, ICP Crops within the UNECE and the Convention on Long Range Transboundary Air Pollution. The results showed that subterranean clover is a useful bioindicator of ozone in all agricultural areas of Sweden, with the exception for very cool and rainy summers resulting in poor growth of the plants. In 1992, and especially in 1994, ozone injury was detected at almost all sites in Sweden, reflecting the higher ozone levels of those summers as compared to 1993, when ozone concentrations were generally low and not much injury was detected. Typical injury was chlorotic and bifacial necrotic lesions on parts of the leaf surface. It is concluded that at mean ozone concentrations of 25 ppb (24 h mean) and 30 ppb (7 h mean) there is a potential risk for injury on 10% of the leaves. When % injured leaves was plotted against AOT (Accumulated exposure Over a Threshold) using different thresholds, it became obvious that a threshold of 20 ppb ozone should be used in order to fully protect from leaf injury under Swedish conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-2932
    Keywords: AOT40 ; barley ; ozone ; ozone concentration gradient ; spruce
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Ozone concentrations were measured at a wind-exposed edge of a 60 year-old 15–20 m tall Norway spruce forest in south-west Sweden and simultaneously over a barley field 5 km away for 27 days, At the forest site, measurements were performed at 3 and 13 m height 15 m in front of the forest edge, at 3 m height 15 m into the forest, and at 3 and 13 m height 45 m into the forest. Measurements at 3 m were made with three replicate tubes separated by 10 m. Differences between replicates were small. At 13 m height, the concentration (24-hr-average) 45 m into the forest was 95% of that in front of the forest edge. The average concentration at 3 m height did not vary strongly with the distance into the forest, but was 86% of that at 13 m in front of the forest edge. For AOT40 (Accumulated Exposure Over Threshold 40 ppb ozone), the differences between different positions were larger. At the 13 m level the AOT40 (day and night) was 88% of that in front of the forest 45 m into the forest. The AOT40 at 3 m was 71% of that at 13 m outside the forest. At the crop site, the ozone concentration at 1.1 m (0.1 m above the canopy), was 78% of that at 9 m (06.00–22.00). The AOT40 at 1.1 m above the ground, however, was only 50% of that at 9 m, indicating that serious errors can arise if ozone monitoring data are used uncorrnected in dose-response relationships based on measurements performed at plant height. The ozone concentration for the whole period differed very little between 9 m height at the crop site and 13 m height at the forest site outside the forest during daytime conditions (06.00–22.00). Night-time (22.00–06.00) values were only 21% at the crop site of those at the forest site due to the stronger night inversion development in the agricultural environment compared to the wind exposed forest edge. The results suggest that variations in topography and vegetation are important to consider when combining ozone monitoring data with dose-response functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...