ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-07-30
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-15
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nature Communications 9 (2018): 660, doi:10.1038/s41467-018-02984-9.
    Description: Efforts to estimate the physical and economic impacts of future climate change face substantial challenges. To enrich the currently popular approaches to impact analysis—which involve evaluation of a damage function or multi-model comparisons based on a limited number of standardized scenarios—we propose integrating a geospatially resolved physical representation of impacts into a coupled human-Earth system modeling framework. Large internationally coordinated exercises cannot easily respond to new policy targets and the implementation of standard scenarios across models, institutions and research communities can yield inconsistent estimates. Here, we argue for a shift toward the use of a self-consistent integrated modeling framework to assess climate impacts, and discuss ways the integrated assessment modeling community can move in this direction. We then demonstrate the capabilities of such a modeling framework by conducting a multi-sectoral assessment of climate impacts under a range of consistent and integrated economic and climate scenarios that are responsive to new policies and business expectations.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-11-26
    Description: Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 5008–5015, doi:10.1002/2017GL073042.
    Description: The Arctic halocline stratification is an important barrier to the transport of deep ocean heat to the underside of sea ice. Surface water in the Chukchi Sea, warmed in summer by solar radiation, ventilates the Canada Basin halocline to create a warm layer below the mixed-layer base. The year-round persistence of this layer is shown to be consistent with the seasonal cycle of halocline ventilation. We present hydrographic observations and model results to show how Chukchi Sea density outcrops migrate seasonally as surface fluxes modify salinity and temperature. This migration is such that in winter, isopycnals bounding the warm halocline are blocked from ventilation, while the cool, relatively salty and deeper halocline layers are ventilated. In this way, the warm halocline is isolated by stratification (both vertically and laterally) each winter. Results shed light on the fate and impact to sea ice of the warm halocline under future freshening and warming of the surface Arctic Ocean.
    Description: National Science Foundation Division of Polar Programs Grant Number: 1107623
    Description: 2017-11-26
    Keywords: Arctic Ocean ; Halocline ; Ventilation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2017-08-02
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geoscientific Model Development 10 (2017): 2833-2848, doi:10.5194/gmd-10-2833-2017.
    Description: A coordinated set of Arctic modelling experiments, which explore how the Arctic responds to changes in external forcing, is proposed. Our goal is to compute and compare "climate response functions" (CRFs) – the transient response of key observable indicators such as sea-ice extent, freshwater content of the Beaufort Gyre, etc. – to abrupt "step" changes in forcing fields across a number of Arctic models. Changes in wind, freshwater sources, and inflows to the Arctic basin are considered. Convolutions of known or postulated time series of these forcing fields with their respective CRFs then yield the (linear) response of these observables. This allows the project to inform, and interface directly with, Arctic observations and observers and the climate change community. Here we outline the rationale behind such experiments and illustrate our approach in the context of a coarse-resolution model of the Arctic based on the MITgcm. We conclude by summarizing the expected benefits of such an activity and encourage other modelling groups to compute CRFs with their own models so that we might begin to document their robustness to model formulation, resolution, and parameterization.
    Description: The experiments described here were made possible by support from the NSF program in Arctic Research, award number 1603557. Jeffery Scott received support from the Joint Program on the Science and Policy of Global Change, which is funded by a number of federal agencies and a consortium of industrial and foundation sponsors.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The dependence of the depth and strength of the ocean's global meridional overturning cells (MOC) on the specification of mesoscale eddy diffusivity (K) is explored in two ocean models. The GISS and MIT ocean models are driven by the same prescribed forcing fields, configured in similar ways, spun up to equilibrium for a range of K 's and the resulting MOCs mapped and documented. Scaling laws implicit in modern theories of the MOC are used to rationalize the results. In all calculations the K used in the computation of eddy-induced circulation and that used in the representation of eddy stirring along neutral surfaces, is set to the same value but is changed across experiments. We are able to connect changes in the strength and depth of the Atlantic MOC, the southern ocean upwelling MOC, and the deep cell emanating from Antarctica, to changes in K.
    Keywords: Fluid Mechanics and Thermodynamics; Oceanography
    Type: GSFC-E-DAA-TN38981 , Ocean Modelling (ISSN 1463-5003); 111; 1-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-01
    Description: We study the role of the ocean in setting the patterns and timescale of the transient response of the climate to anthropogenic greenhouse gas forcing. A novel framework is set out which involves integration of an ocean-only model in which the anthropogenic temperature signal is forced from the surface by anomalous downwelling heat fluxes and damped at a rate controlled by a ‘climate feedback’ parameter. We observe a broad correspondence between the evolution of the anthropogenic temperature ( $$T_{anthro}$$ T a n t h r o ) in our simplified ocean-only model and that of coupled climate models perturbed by a quadrupling of $$hbox {CO}_{2}$$ CO 2 . This suggests that many of the mechanisms at work in fully coupled models are captured by our idealized ocean-only system. The framework allows us to probe the role of the ocean in delaying warming signals in the Southern Ocean and in the northern North Atlantic, and in amplifying the warming signal in the Arctic. By comparing active and passive temperature-like tracers we assess the degree to which changes in ocean circulation play a role in setting the distribution and evolution of $$T_{anthro}$$ T a n t h r o . The background ocean circulation strongly influences the large-scale patterns of ocean heat uptake and storage, such that $$T_{anthro}$$ T a n t h r o is governed by an advection/diffusion equation and weakly damped to the atmosphere at a rate set by climate feedbacks. Where warming is sufficiently small, for example in the Southern Ocean, changes in ocean circulation play a secondary role. In other regions, most noticeably in the North Atlantic, changes in ocean circulation induced by $$T_{anthro}$$ T a n t h r o are central in shaping the response. ©2014 The Author(s)〈br /〉〈br /〉〈a href="http://doi.org/10.1007/s00382-014-2308-0" target="_blank"〉〈img src="http://bib.telegrafenberg.de/typo3temp/pics/f2f773b55e.png" border="0"〉〈/a〉
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2008-04-01
    Description: The response of the ocean’s meridional overturning circulation (MOC) to increased greenhouse gas forcing is examined using a coupled model of intermediate complexity, including a dynamic 3-D ocean subcomponent. Parameters are the increase in CO2 forcing (with stabilization after a specified time interval) and the model’s climate sensitivity. In this model, the cessation of deep sinking in the north “Atlantic” (hereinafter, a “collapse”), as indicated by changes in the MOC, behaves like a simple bifurcation. The final surface air temperature (SAT) change, which is closely predicted by the product of the radiative forcing and the climate sensitivity, determines whether a collapse occurs. The initial transient response in SAT is largely a function of the forcing increase, with higher sensitivity runs exhibiting delayed behavior; accordingly, high CO2-low sensitivity scenarios can be assessed as a recovering or collapsing circulation shortly after stabilization, whereas low CO2-high sensitivity scenarios require several hundred additional years to make such a determination. We also systemically examine how the rate of forcing, for a given CO2 stabilization, affects the ocean response. In contrast with previous studies based on results using simpler ocean models, we find that except for a narrow range of marginally stable to marginally unstable scenarios, the forcing rate has little impact on whether the run collapses or recovers. In this narrow range, however, forcing increases on a time scale of slow ocean advective processes results in weaker declines in overturning strength and can permit a run to recover that would otherwise collapse. ©2007 Springer-Verlag
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-01
    Description: We discuss a strategy for investigating the impacts of climate change on Earth’s physical, biological and human resources and links to their socio-economic consequences. As examples, we consider effects on agriculture and human health. Progress requires a careful understanding of the chain of physical changes—global and regional temperature, precipitation, ocean acidification, polar ice melting. We relate those changes to other physical and biological variables that help people understand risks to factors relevant to their daily lives—crop yield, food prices, premature death, flooding or drought events, land use change. Finally, we investigate how societies may adapt, or not, to these changes and how the combination of measures to adapt or to live with losses will affect the economy. Valuation and assessment of market impacts can play an important role, but we must recognize the limits of efforts to value impacts where deep uncertainty does not allow a description of the causal chain of effects that can be described, much less assigned a likelihood. A mixed approach of valuing impacts, evaluating physical and biological effects, and working to better describe uncertainties in the earth system can contribute to the social dialogue needed to achieve consensus on the level and type of mitigation and adaptation actions. ©2012 Springer Science+Business Media Dordrecht
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-07-01
    Description: In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the United States (US) associated with four dimensions of uncertainty. The sources of uncertainty considered in this framework are the emissions projections, global climate system parameters, natural variability and model structural uncertainty. The modeling framework revolves around the Massachusetts Institute of Technology (MIT) Integrated Global System Model (IGSM), an integrated assessment model with an Earth System Model of Intermediate Complexity (EMIC) (with a two-dimensional zonal-mean atmosphere). Regional climate change over the US is obtained through a two-pronged approach. First, we use the IGSM-CAM framework, which links the IGSM to the National Center for Atmospheric Research (NCAR) Community Atmosphere Model (CAM). Second, we use a pattern-scaling method that extends the IGSM zonal mean based on climate change patterns from various climate models. Results show that the range of annual mean temperature changes are mainly driven by policy choices and the range of climate sensitivity considered. Meanwhile, the four sources of uncertainty contribute more equally to end-of-century precipitation changes, with natural variability dominating until 2050. For the set of scenarios used in this study, the choice of policy is the largest driver of uncertainty, defined as the range of warming and changes in precipitation, in future projections of climate change over the US. ©2014 The Author(s)〈br /〉〈br /〉〈a href="http://doi.org/10.1007/s10584-014-1112-5" target="_blank"〉〈img src="http://bib.telegrafenberg.de/typo3temp/pics/f2f773b55e.png" border="0"〉〈/a〉
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...