ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-25
    Description: Thirty-nine thunderstorms are examined using multiple-Doppler, polarimetric, and total lightning observations to understand the role of mixed-phase kinematics and microphysics in the development of lightning jumps. This sample size is larger than those of previous studies on this topic. The principal result of this study is that lightning jumps are a result of mixed-phase updraft intensification. Larger increases in intense updraft volume (≥10 m s−1) and larger changes in peak updraft speed are observed prior to lightning jump occurrence when compared to other nonjump increases in total flash rate. Wilcoxon–Mann–Whitney rank sum testing yields p values ≤ 0.05, indicating statistical independence between lightning jump and nonjump distributions for these two parameters. Similar changes in mixed-phase graupel mass magnitude are observed prior to lightning jumps and nonjump increases in total flash rate. The p value for the graupel mass change is p = 0.096, so jump and nonjump distributions for the graupel mass change are not found to be statistically independent using the p = 0.05 significance level. The timing of updraft volume, speed, and graupel mass increases is found to be 4–13 min in advance of lightning jump occurrence. Also, severe storms without lightning jumps lack robust mixed-phase updrafts, demonstrating that mixed-phase updrafts are not always a requirement for severe weather occurrence. Therefore, the results of this study show that lightning jump occurrences are coincident with larger increases in intense mixed-phase updraft volume and peak updraft speed than smaller nonjump increases in total flash rate.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-03-01
    Print ISSN: 1528-7483
    Electronic ISSN: 1528-7505
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-11-19
    Description: A detailed case study analysis of four thunderstorms is performed using polarimetric and multi-Doppler capabilities to provide specificity on the physical and dynamical drivers behind lightning jumps. The main differences between small increases in the total flash rate and a lightning jump are the increases in graupel mass and updraft volumes ≥10 m s−1 between the −10° and −40°C isotherms. Updraft volumes ≥10 m s−1 increased in magnitude at least 3–5 min in advance of the increase in both graupel mass and total flash rate. Updraft volumes ≥10 m s−1 are more robustly correlated to total flash rate than maximum updraft speed over a thunderstorm’s entire life cycle. However, peak updraft speeds increase prior to 8 of the 12 lightning jumps examined. Decreases in mean and median flash footprint size during increases in total lightning are observed in all four thunderstorms and are most notable during development stages within the most intense storms. However, this inverse relationship breaks down on larger storm scales as storms mature and anvils and stratiform regions developed with time. Promisingly, smaller flash sizes are still collocated with the strongest updraft speeds, while larger flash sizes are observed within weaker updraft regions. The results herein emphasize the following for lightning jump applications: both the lightning jump sigma level and the resultant magnitude of the total flash rate must be employed in conjunction to assess storm intensity using lightning data. The sigma-level magnitude of the lightning jump is the early warning that indicates that rapid intensification is occurring, while the magnitude of the total flash rate provides insight into the size and maintenance of the updraft volume and graupel mass. These cases serve as conceptual models for future applications of the lightning jump algorithm for hazardous weather monitoring.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-02-01
    Description: This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate [i.e., lightning jump (LJ)]. An automated storm tracking method is used to identify storm “clusters” and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama, and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer and relate to higher maximum expected size of hail, vertical integrated liquid, and lightning flash rates (area normalized) than do the clusters without an LJ (LJ0). The respective mean radar-derived and lightning values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg m−2 (18 kg m−2), and 0.05 flash min−1 km−2 (0.01 flash min−1 km−2). Furthermore, the LJ1 clusters are also characterized by slower-decaying autocorrelation functions, a result that implies a less “random” behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm’s dissipation. Depending on the LJ strength (i.e., varying thresholds), these values typically range between 20 and 60 min, with stronger jumps indicating more time until storm decay. This study’s results support the hypothesis that the LJ is a proxy for the storm’s kinematic and microphysical state rather than a coincidental value.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-12-09
    Description: Lightning flash rate parameterizations based on polarimetric and multi-Doppler radar inferred microphysical (e.g., graupel volume, graupel mass, 35 dBZ volume) and kinematic (e.g., updraft volume, maximum updraft velocity) parameters have important applications in atmospheric science. Although past studies have established relations between flash rate and storm parameters, their expected performance in a variety of storm and flash rate conditions is uncertain due to sample limitations. Radar network and lightning mapping array observations over Alabama of a large and diverse sample of 33 storms are input to hydrometeor identification, vertical velocity retrieval and flash rate algorithms to develop and test flash rate relations. When applied to this sample, prior flash rate linear relations result in larger errors overall, including often much larger bias (both over- and under-estimation) and root mean square errors compared to the new linear relations. At low flash rates, the new flash rate relations based on kinematic parameters have larger errors compared to those based on microphysical ones. Sensitivity of error to the functional form (e.g., zero or non-zero intercept) is also tested. When considering all factors (e.g., low errors including at low flash rate, consistency with past linear relations, and insensitivity to functional form), the flash rate parameterization based on graupel volume has the best overall performance.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2019-07-27
    Description: Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
    Keywords: Meteorology and Climatology
    Type: M12-2364 , American Meteorological Society (AMS) Annual Meeting; 6 = 10 Jan 2013; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: The Deep Convective Clouds and Chemistry (DC3) field campaign investigates the impact of deep, midlatitude convective clouds, including their dynamical, physical and lighting processes, on upper tropospheric composition and chemistry. DC3 science operations took place from 14 May to 30 June 2012. The DC3 field campaign utilized instrumented aircraft and ground ]based observations. The NCAR Gulfstream ]V (GV) observed a variety of gas ]phase species, radiation and cloud particle characteristics in the high ]altitude outflow of storms while the NASA DC ]8 characterized the convective inflow. Groundbased radar networks were used to document the kinematic and microphysical characteristics of storms. In order to study the impact of lightning on convective outflow composition, VHF ]based lightning mapping arrays (LMAs) provided detailed three ]dimensional measurements of flashes. Mobile soundings were utilized to characterize the meteorological environment of the convection. Radar, sounding and lightning observations were also used in real ]time to provide forecasting and mission guidance to the aircraft operations. Combined aircraft and ground ]based observations were conducted at three locations, 1) northeastern Colorado, 2) Oklahoma/Texas and 3) northern Alabama, to study different modes of deep convection in a variety of meteorological and chemical environments. The objective of this paper is to summarize the Alabama ground operations and provide a preliminary assessment of the ground ]based observations collected over northern Alabama during DC3. The multi ] Doppler, dual ]polarization radar network consisted of the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR), the UAHuntsville Mobile Alabama X ]band (MAX) radar and the Hytop (KHTX) Weather Surveillance Radar 88 Doppler (WSR ]88D). Lightning frequency and structure were observed in near real ]time by the NASA MSFC Northern Alabama LMA (NALMA). Pre ]storm and inflow proximity soundings were obtained with the UAHuntsville mobile sounding unit and the Redstone Arsenal (QAG) morning sounding.
    Keywords: Meteorology and Climatology
    Type: M12-2056 , 93rd American Meteological Society (AMS) Annual Fall Meeting 2012; Jan 06, 2013 - Jan 10, 2013; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. In order to become a viable option for operational forecasters to incorporate into their severe storm monitoring process, the total lightning jump must be placed into the framework of several severe storm conceptual models (e.g., radar evolution, storm morphology) which forecasters have built through training and experience. Thus, one of the goals of this study is to examine and relate the lightning jump concept to often used radar parameters (e.g., dBZ vertical structure, VIL, MESH, MESO/shear) in the warning environment. Tying lightning trends and lightning jump occurrences to these radar based parameters will provide forecasters with an additional tool that they can use to build an accurate realtime depiction as to what is going on in a given environment. Furthermore, relating the lightning jump concept to these parameters could also increase confidence in a warning decision they have already made, help tip the scales on whether or not to warn on a given storm, or to draw the forecaster s attention to a particular storm that is rapidly developing. Furthermore the lightning information will add vital storm scale information in regions that are not well covered by radar, or when radar failures occur. The physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation -sized ice mass, etc.; however, very few have related the concept of the lightning jump and manifestation of severe weather to storm dynamics and microphysics using multi -Doppler and polarimetric radar techniques. Therefore, the second half of this study will combine the lightning jump algorithm and these radar techniques in order to place the lightning jump concept into a physical and dynamical framework. This analysis includes examining such parameters as mixed phase precipitation volume, charging zone, updraft strength and updraft volume. Such a study should provide increased understanding of and confidence in the strengths and limitations of the lightning jump algorithm in the storm warning process.
    Keywords: Meteorology and Climatology
    Type: M12-2002 , 93rd Annual American Meteorological Society (AMS) Meeting; Jan 06, 2013 - Jan 10, 2013; Austin, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-19
    Description: On April 27, 2011, the southeastern United States was raked with several episodes of severe weather. Numerous tornadoes caused extensive damage, and tragically, the deaths of over 300 people. In Alabama alone, there were 61 confirmed tornados, 4 of them produced EF5 damage, and several were on the ground an hour or more with continuous damage tracks exceeding 80km. The use of Doppler radars covering the region provided reflectivity and velocity signatures that allowed forecasters to monitors the severe storms from beginning to end issuing hundreds of severe weather warnings throughout the day. Meteorologists from the the NWS performed extensive surveys to assess the intensity, duration, and ground track of tornadoes reported during the event. Survey activities included site visits to the affected locations, analysis of radar and satellite data, aerial surveys, and interviews with eyewitnesses. Satellite data from NASA's MODIS and ASTER instruments played a helpful role in determining the location of tornado damage paths and in the assessment. High resolution multispectral and temporal composites helped forecasters corroborate their damage assessments, determine starting and ending points for tornado touchdowns, and helped to provide forecasters with a better big-picture view of the damage region. The imagery also helped to separate damage from the April 27th tornados from severe weather that occurred earlier that month. In a post analysis of the outbreak, tornado damage path signatures observed in the NASA satellite data have been correlated to "debris ball" signatures in the NWS Doppler radars and a special ARMOR dual-polarization radar operated by the University of Alabama Huntsville during the event. The Doppler radar data indicates a circular enhanced reflectivity signal and rotational couplet in the radial velocity likely associated with the tornado that is spatially correlated with the damage tracks in the observed satellite data. An algorithm to detect and isolate the "debris ball" from precipitation signatures in the dual polarization radar data has been developed and verified using the NASA damage track data.
    Keywords: Meteorology and Climatology
    Type: M11-0946 , 2011 AGU Fall Meeting; Dec 05, 2011 - Dec 09, 2011; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...