ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Proceed order?

Export
  • 1
    Call number: 5/M 08.0356
    In: Geophysical monograph
    Type of Medium: Monograph available for loan
    Pages: 392 S.
    ISBN: 9780875904382
    Series Statement: Geophysical monograph 173
    detail.hit.classification_display:
    D.3.
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Agricultural Water Management 25 (1994), S. 121-134 
    ISSN: 0378-3774
    Keywords: Heavy rainfall ; Particle size loss ; Soil loss
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0495
    Keywords: Key words Clay minerals ; Erodibility of clay ; Heavy rainfall ; Atmospheric sodium
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Heavy rainfalls, between 25 and 100 mm·h–1, were simulated on Pliocene/Quaternary sediments. To reproduce the heterogeneity of natural environments, 231 small plots of various sizes (between 2.5 and 3.5 m2; mean: about 3 m2) were used. The duration of all simulations was 1 h. We used water that had been collected during natural rainfall. The concentration of clay particles in the sheet wash depended upon the concentration of dissolved sodium in the wash (for about 42%) and of the sheet wash quantity (for about 37%). Under natural water conditions colloidal matter, like clay minerals, is charged negatively and therefore is destabilized by metal cations such as in the case of Na+. Results suggest that relatively higher concentrations of montmorrillonite were related to higher concentrations of sodium as opposed to illite and kaolinite. Microflakes of up to 25 μ were observed to vary between face-to-edge and face-to-face modes (competition between protons and other cations). The concentration of dissolved sodium (Na+) in the runoff water depends on water and sodium balances such as atmospheric input, infiltration, evaporation and surface water runoff. The reduction of vegetation cover increases the amount of salt and amorphous matter in/on the topsoil between heavy rainfall generations. The best predictor to explain montmorillonite, illite and kaolinite in % of mineral clay-sized matter in the surface water runoff (sheet wash) is the percentage of each clay mineral in the topsoil. As opposed to illite and kaolinite, more sheet wash indicate for montmorillonite relatively higher concentrations in the wash. The results of model simulations were confirmed on different field plots of about 1 ha and small catchments during natural heavy rainfall events. Models can also be used to understand and to better simulate sheet, rill and gully erosion, micropedimentation; and pedimentation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Calcium hydroxyapatite and calcite precipitates around bacteria were observed in 2-week-old alluvial topsoil (Roussillon area, SE France). This observation prompted a laboratory study of Ca2+ and PO43− incorporation into hydroxyapatite and Ca2+ into calcite mediated by bacteria using similar topsoil material, but free from apatite and calcite. Subsamples were prepared using three different grain sizes, and experiments were undertaken using sucrose and different contents of Ca2+ and PO43−. Mineralization experiments proceeded over 5 days. Calcium and PO43− sorption onto clay influenced the Ca/P ratio in the solutions. Hydroxyapatite and calcite precipitation only occurred in unsterilized samples. The presence of clay minerals promoted biomineralization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0894
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Parametrisations of meridional energy and moisture transport used in zonally averaged climate models are validated using reanalysis data and results from a doubling CO2-experiment from a general circulation model. Global meridional fluxes of moisture and sensible heat are calculated by integrating surface and top-of-the-atmosphere vertical fluxes from one pole to the other. The parametrisations include an eddy-diffusion term, representing down-gradient transport of specific humidity and temperature due to the transient atmospheric eddies at mid- and high latitudes, and simple representations of the mean meridional circulation. Qualitative and quantitative agreement between the increased hydrological cycle in the 2×CO2-run from the GCM and the parametrisation is found. The performance for the sensible heat flux shows larger differences to the GCM results, particularly at low latitudes. Seasonal variations of the moisture and sensible heat transport are well captured by parametrisations including the influence of the mean meridional circulation. Interannual variability cannot be simulated. An examination of the parametrisations on different spatial scales suggests that they should not be used for small scales. Furthermore, two closures for the zonal distribution of precipitation were examined. They are used in zonally averaged atmosphere models coupled to an ocean model with different ocean basins at one latitudinal belt. An assessment of both the reanalysis data and the GCM results shows that both closures exhibit very similar behaviour and are valid in the long-term mean and seasonal cycle. Interannual variability is not captured well. They become invalid for spatial scales smaller than 10∘.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 434 (2005), S. 628-633 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Reorganizations of the Atlantic meridional overturning circulation were associated with large and abrupt climatic changes in the North Atlantic region during the last glacial period. Projections with climate models suggest that similar reorganizations may also occur in response to ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 388 (1997), S. 862-865 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Present estimates of the future oceanic uptake of anthropogenic CO2 and calculations of CO2-emission scenarios are based on the assumption that the natural carbon cycle is in steady state. But it iswell known from palaeoclimate records and modelling studies that the ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-20
    Description: A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year 2100 and subsequent linear decrease to zero until year 2300, corresponding to a total release of 5100 GtC). Atmospheric CO2 increases to a peak of more than 2000 ppmv near year 2300 (that is an airborne fraction of 72% of the emissions) followed by a gradual decline to ∼1700 ppmv at year 4000 (airborne fraction of 56%). Forty-four percent of the additional atmospheric CO2 at year 4000 is due to positive carbon cycle–climate feedbacks. Global surface air warms by ∼10°C, sea ice melts back to 10% of its current area, and the circulation of the abyssal ocean collapses. Subsurface oxygen concentrations decrease, tripling the volume of suboxic water and quadrupling the global water column denitrification. We estimate 60 ppb increase in atmospheric N2O concentrations owing to doubling of its oceanic production, leading to a weak positive feedback and contributing about 0.24°C warming at year 4000. Global ocean primary production almost doubles by year 4000. Planktonic biomass increases at high latitudes and in the subtropics whereas it decreases at midlatitudes and in the tropics. In our model, which does not account for possible direct impacts of acidification on ocean biology, production of calcium carbonate in the surface ocean doubles, further increasing surface ocean and atmospheric pCO2. This represents a new positive feedback mechanism and leads to a strengthening of the positive interaction between climate change and the carbon cycle on a multicentennial to millennial timescale. Changes in ocean biology become important for the ocean carbon uptake after year 2600, and at year 4000 they account for 320 ppmv or 22% of the atmospheric CO2 increase since the preindustrial era.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-20
    Description: The primary impacts of anthropogenic CO2 emissions on marine biogeochemical cycles predicted so far include ocean acidification, global warming induced shifts in biogeographical provinces, and a possible negative feedback on atmospheric CO2 levels by CO2‐fertilized biological production. Here we report a new potentially significant impact on the oxygen‐minimum zones of the tropical oceans. Using a model of global climate, ocean circulation, and biogeochemical cycling, we extrapolate mesocosm‐derived experimental findings of a pCO2‐sensitive increase in biotic carbon‐to‐nitrogen drawdown to the global ocean. For a simulation run from the onset of the industrial revolution until A.D. 2100 under a “business‐as‐usual” scenario for anthropogenic CO2 emissions, our model predicts a negative feedback on atmospheric CO2 levels, which amounts to 34 Gt C by the end of this century. While this represents a small alteration of the anthropogenic perturbation of the carbon cycle, the model results reveal a dramatic 50% increase in the suboxic water volume by the end of this century in response to the respiration of excess organic carbon formed at higher CO2 levels. This is a significant expansion of the marine “dead zones” with severe implications not only for all higher life forms but also for oxygen‐sensitive nutrient recycling and, hence, for oceanic nutrient inventories.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...