ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 83 (1972), S. 246-260 
    ISSN: 1432-072X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The binding of radioactivity from14C-penicillin G labelled in the acyl side chain toProteus mirabilis D 52 was examined. Under the conditions of the binding assay about 90% of the cells lost their viability upon saturation with radioactivity from14C-penicillin G which required 18 μg penicillin G/mg dry weight of cells and an incubation time of 2 h at 37° C. Examination of 6-aminopenicillanic acid showed that this compound, in contrast to grampositive bacteria, has little effect on the binding of radioactivity from14C-penicillin G toP. mirabilis D 52. In contrast to 6-aminopenicillanic acid, inhibition of binding of radioactivity from14C-penicillin G toP. mirabilis D 52 is obtained with phenacetylglycine, a compound considered as structural analogue of the acyl side chain in penicillin G. In addition, this compound interferes with a basic property of penicillin G in that in its presence formation of sphaeroplasts is prevented. A reaction, specific for gramnegative bacteria, is proposed in which the acyl side chain of penicillin G is transfered to a cellular component.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2048
    Keywords: Abscisic acid ; Gene expression (effects of glutamine, inhibitors, sucrose) ; Methyl jasmonate ; Patatin (gene expression) ; Proteinase inhibitor II (gene expression) ; Solanum (detached leaves)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In whole intact potato (Solanum tuberosum L.) plants, the gene families of class-I patatin and proteinase inhibitor II (Pin 2) are constitutively expressed in the tubers. However, they are also induced in detached potato leaves in the presence of light. To further characterize this light action, the detached leaves were subjected to monochromatic light of different wavelengths and to darkness in the presence of metabolites and inhibitors. Patatin genes could be induced by the simultaneous application of sucrose (sugars) and glutamine in darkness. Neither of these metabolites was active when supplied alone. When photosynthesis was blocked by 3-(3,4-Di-chlorophenyl)-1, 1-dimethylurea (DCMU) in the light, patatin genes were not expressed; however, the inhibition was overcome in the presence of sucrose. This indicates that besides its role in photosynthetic carbohydrate production, light may be essential for the supply of amino acids (or reduced nitrogen). Unlike patatin, Pin 2 genes were, to a small extent, also active in darkness, and sucrose weakly enhanced this expression. However, DCMU did not affect Pin 2 expression in the light. Both abscisic acid and methyl jasmonate strongly promoted the accumulation of Pin 2 mRNA independent of the light conditions, indicating that the gene family is probably under hormonal control. The phytohormones did not affect patatin gene expression. Inhibitors of cytosolic (cycloheximide) and organellar (chloramphenicol) translation had opposite effects on the two gene families. Careful evaluation of the inhibitors' action indicates that protein synthesis (cytosol) is required for the expression of Pin 2 genes but not for the patatin genes. These results clearly demonstrate that, although in situ both gene families are constitutively expressed in the same plant organ (tuber) in intact plants, their expression is mediated by different factors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2048
    Keywords: Ectocarpus (Phaeophyta) ; Circadian rhythm (photosynthesis) ; Blue light (stimulation of photosynthesis) ; Phase shifting (blue light) ; Photosynthesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The photosynthetic oxygen production of Ectocarpus siliculosus (Dillwyn) Lyngb. under continuous high irradiances of red light displayed a circadian rhythm with maxima at about noon. Pulses of blue light induced rapid transient increases in the rate of photosynthesis. The increases started about 15 s after the beginning of blue light and reached their maxima after 3–4 min. This was followed by a gradual decrease. A second peak or shoulder about 20 min later indicated that at least two reactions were involved in the blue-light enhancement of photosynthesis. The magnitude of the response to blue light depended on the phase of the rhythm at which blue light was given. It was high when the red-light photosynthesis was at its troughs, and low at its peaks. Fluence-response curves indicated that the sensitivity to blue light at the peaks of the rhythm was identical to that at the troughs. In addition, blue light shifted the phase of the photosynthetic rhythm, where the essential trigger was the light-off signal. Red light had no specific influence on the circadian rhythm. After darkness, photosynthetic rates were different from those under steady-state conditions. Two different transient bursts in the rate of O2 evolution could be distinguished, an early non-rhythmical one that was probably caused by accumulation of inorganic carbon inside the cells, and a second later one that appeared at the peak activity phases of the ciradian rhythm or after blue light. Its origins are unclear.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2048
    Keywords: Ectocarpus (Phaeophyta) ; Circadian rhythm (photosynthesis) ; Blue light (stimulation of photosynthesis) ; Photosynthesis (irradiance and CO2 dependence of rhythm)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Photosynthesis of Ectocarpus siliculosus (Dillwyn) Lyngb. under continuous saturating red irradiation follows a circadian rhythm. Blue-light pulses rapidly stimulate photosynthesis with high effectiveness in the troughs of this rhythm but the effectiveness of such pulses is much lower at its peaks. In an attempt to understand how blue light and the rhythm affected photosynthesis, the effects of inorganic carbon on photosynthetic light saturation curves were studied under different irradiation conditions. The circadian rhythm of photosynthesis was apparent only at irradiances which were not limiting for photosynthesis. The same was found for blue-light-stimulated photosynthesis, although stimulation was observed also under very low red-light irradiances after a period of adaptation, provided that the inorganic-carbon concentration was not in excess. Double-reciprocal plots of light-saturated photosynthetic rates versus the concentration of total inorganic carbon (up to 10 mM total inorganic carbon) were linear and had a common constant for half-saturation (3.6 mM at pH 8) at both the troughs and the peaks of the rhythm and before and after blue-light pulses. Only at very low carbon concentrations was a clear deviation found from these lines for photosynthesis at the rhythm maxima (red and blue light), which indicated that the strong carbon limitation specifically affected photosynthesis at the peak phases of the rhythm. Very high inorganic carbon concentrations (20 mM) in the medium diminished the responses to blue light, although they did not fully abolish them. The kinetics of the stimulation indicate that the rate of photosynthesis is affected by two blue-light-dependent components with different time courses of induction and decay. The faster component seemed to be at least partially suppressed at red-light irradiances which were not saturating for photosynthesis. Lowering the pH of the medium had the same effects as an increase of the carbon concentration to levels of approx. 10 mM. This indicates that Ectocarpus takes up free CO2 only and not bicarbonate, although additional physiological mechanisms may enhance the availability of CO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Acetabularia ; Hair formation (Acetabularia) ; Light and hair formation (Acetabularia) ; Phytochrome (ineffectiveness)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract After a pre-treatment with red light, hair formation at the growing tip of the siphonaceous green alga Acetabularia mediterranea Lamour. (= A. acetabulum (L.) Silva) can be induced by a pulse of blue light. Red light is needed again after the inductive blue-light pulse if the new whorl of hairs is to develop within the next 24 h. In order to investigate the role of this red light, the duration of the red irradiation was varied and combined with periods of darkness. The response of hair-whorl formation was dependent on the total amount of red light, regardless of whether the red irradiation followed the blue pulse immediately or was separated from it by a period of darkness. Furthermore, periods of exposure to the photosynthesis inhibitor 3-(3′,4′-dichlorophenyl)-1-1dimethylurea had a similar effect to darkness. Both observations indicate that this red irradiation acts as a light source for photosynthesis. Whether or not the red light had an additional effect via phytochrome was tested in another type of experiment. The dependence of hair-whorl formation on red-light irradiance in the presence of simultaneous far-red irradiation was determined for the pre-irradiation period as well as for the irradiation period after the blue pulse. In both experiments, far-red light caused a small promotion of hair-whorl formation when low irradiances of red light were used. However, these differences were attributable to a low level of photosynthetic activity (which in fact was measurable) caused by red light reflected in the growth chamber. Furthermore, lowering the proportion of active phytochrome by far-red light would be expected to suppress hair-whorl formation. The influence of far-red light was also tested in a strain of Acetabularia mediterranea that developed hair whorls in about 20% of cells even when kept in complete darkness after the blue-light pulse. Far-red irradiation had no effect. These results strongly indicate that phytochrome is not involved in hair-whorl formation. Rather it is concluded that the effects of red light are caused by photosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2048
    Keywords: Action spectroscopy ; Blue light (sensitivity) ; Flavin inhibitor ; Phaeophyta ; Photosynthesis ; pH shift
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two blue-light responses of Phaeophyta that are expressed within a few seconds of a blue-light stimulus were characterized with respect to their photoreception properties. The first response is the activation of red-light-saturated photosynthesis which can be stimulated to values up to 5 times the rates in red light, depending on the species. The second response is a blue-light-induced acidification measurable at the plant surface. Both responses have similar kinetic characteristics and thus led us initially to hypothesise that they were causally connected in the same transduction mechanism. The two responses have action spectra [measured for Ectocarpus siliculosus (Dillwyn) Lyngb. and Laminaria saccharina (L.) Lamouroux] that are indistinguishable within the relatively large limits of error. However, in all species tested, the threshold sensitivity for blue light of the photosynthetic response is lower than that of the pH-shift by a factor of 2 to 150. Furthermore, stimulation of photosynthesis is sensitive to the flavin inhibitors, KI and phenylacetic acid, but the pH response is not affected by these inhibitors. Thus, the blue-light-induced pH-shift does not cause the stimulation of photosynthesis. In contrast, the different fluence-response relationships of the two responses and particularly the differential effect of the inhibitors are clear evidence for the action of two independent transduction pathways and photoreceptor systems for blue light. At least photoreception for stimulation of photosynthesis involves a flavin-or and a pterin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2048
    Keywords: Acetabularia ; Blue light ; Chlorophyll-protein complexes ; Photosystem II (antenna function) ; Thylakoid (polypeptide composition)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The high photosynthetic activity (O2 production and CO2 consumption) ofAcetabularia mediterranea Lamour. (=A. acetabulum (L.) Silva) characteristic of cells cultured in white light decreases slowly when cells are kept in continuous red light, and is less than 20% of the original activity after three weeks. Subsequent blue irradiation restores the original activity completely within 3–5 d. The polypeptide composition of the thylakoids from cells grown in either red or blue light and after transfer from red to blue light was analyzed mainly with regards to photosystem II (PSII). The P700-containing reaction-centre complex of photosystem I, CPI, showed only minor quantitative alterations as a consequence of the growth-light quality, which correlated well with the activity of photosystem I under these conditions. In PSII, no drastic changes occurred in the quantity of the reaction-centre components D1 (herbicide-binding polypeptide) and D2, as determined by immunoblots. Likewise, the proteins associated with the water-splitting apparatus did not change detectably in thylakoids from red- or blue-light-treated cells (the 16-kDa component could not be found inAcetabularia thylakoids). The level of the major light-harvesting complex was completely unaffected by the light quality. In contrast, the quantities of the chlorophyll a-protein complexes of the core antenna, CP43 and CP47 (and probably CP29), changed, with kinetics similar to those of total photosynthetic activity. We postulate that the function of the PSII antenna became increasingly impaired in the absence of blue light (i.e. in red light), while blue light had a restoring effect. The peripheral antenna, comprising the light-harvesting complexes, is probably functionally connected with the reaction-centre chlorophylls via the core antenna chlorophyll-protein complexes (CP43, CP47 and probably CP29). A deficiency of these complexes would lead to uncoupling of antenna and reaction centre in the majority of PSII complexes after long periods of red-light treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2048
    Keywords: Acetabularia ; Blue light (pulse irradiation) ; Hair formation ; Acetabularia ; Light responsiveness (change)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract After a prolonged period of red light the formation of a new whorl of lateral hairs can be induced inAcetabularia mediterranea Lamouroux (=A. acetabulum (L.) Silva) by a pulse of blue light. It has previously been shown that the response to blue light obeys the law of reciprocity. In this paper we demonstrate that the responses to blue light are additive only within 10 min after the onset of blue-light treatment, since the responsiveness of the cells is also affected by blue light. One hour after a short blue-light pulse the response to a second blue-light pulse has come to a minimum. After that, the responsiveness is restored in a refractory period of several hours. The fluenceresponse curves for hair-whorl formation at the time of minimum responsiveness are shifted parallel to the original fluence-response curves without preirradiation. Again, the law of reciprocity applies. This indicates an increased light requirement only for the same degree of hair-formation response. The sensitivity to blue light of the “reduction of responsiveness” response is higher by a factor of about 50 than the “induction of hairformation” response.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract InEscherichia coli C infected with bacteriophage ϕX174, the cytoplasmic and outer membranes of the host bacterium exhibit various alterations in their protein composition as revealed by sodium dodecyl sulfate gel electrophoresis of purified membranes. These alterations result mainly from the action of the lysis gene product of the phage. One effect of the changes occurring in the membranes results in different rates of release of wild-type phage and its lysis-negative mutant from glycine spheroplasts. The activity of phospho-MurNAc-pentapeptide translocase, an enzyme involved in murein synthesis and located in the cytoplasmic membrane, is unimpaired by these alterations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...