ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 1 (1982), S. 281-304 
    ISSN: 1573-4943
    Keywords: conformational energy ; empirical free energies ; Ising model ; Monte Carlo ; statistical mechanical probabilities
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The relative importance of short- and long-range interactions is examined using a Monte Carlo simulation of protein folding on bovine pancreatic trypsin inhibitor. The model of the protein and the interaction energies were parametrized using X-ray structures of 30 native proteins. A nearest neighbor Ising model is used to determine the conformational state at each stage of the Monte Carlo procedure. Long-range interactions are simulated by contact free energies which become effective as two residues, separated by four or more residues along the chain, approach each other, and by disulfide-bond energies. Short-range interactions for residues separated by one, two, or three residues along the chain are also modeled by contact free energies and by α-helical hydrogen bonds. A hard-sphere model is used to represent repulsive interactions. The ratios of short- to long-range interactions studied are 1:1, 2:1, 1:2, 0:1, and 1:0; e.g., for the 2:1 ratio, short-range interactions are weighted twice as much as long-range interactions, and for the 1:0 ratio, long-range interactions are omitted. For each ratio of short- to long-range interactions, a “native” conformation is found by a Monte Carlo procedure, a segment of 11 residues (residue numbers 1–11) is then rotated away from the rest of the molecule [breaking the 5–55 native disulfide bond, and moving this segment so that the distance between the sulfur atoms of the 5 and 55 cystine side chains (averaged for all “native” conformations) increases from 3.9 to 7.3 Å], and the Monte Carlo simulation is carried out (allowing the conformation of the whole molecule to change) until equilibrium is attained. For each ratio, the refolded conformation is compared to the “native” one using triangular distance maps and differential geometry distance criteria. With ratios of short- to long-range interaction energies of 1:1 and 0:1, the native disulfide bond could be re-formed; with ratios of 2:1 and 1:2 it did not; and with the 1:0 ratio, even a stable “native” conformation was not achieved. Therefore, long-range interactions (in addition to short-range ones) are required to bring remote parts of the protein together and to stabilize its native conformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Arginine ; guanidinium ; ion-pair interactions ; solvation ; electrostatic ; semi-empirical
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Although the majority of the ion pairs found in proteins consists of two charges of opposite sign, the observation of some unusual arrangements of two arginines led us to a search of such occurrences in the Brookhaven Protein Data Bank. We have found 41 Arginine-Arginine interactions with a Cζ...Cζ distance less than 5 å. Computer graphics analysis of these structures shows that most of the Arg-Arg pairs are found in the vicinity of the surface of the proteins, in an easily hydrated region. In order to determine which factors could stabilize such arrangements of species of similar charge, we have carried out AM1 semi-empirical calculations on a model of two guanidinium ions surrounded by several water molecules. The results show the existence of stable clusters with six or more water molecules, with distances between Cζ atoms around 3 å. The bridging role of the water molecules is an important structural and energetic feature and we find bridges of two and three molecules between the guanidinium ions. These results are in good agreement with the structures found in our search of the experimental data. Enhancement of the electrostatic potential around these clusters, when compared to one of the guanidinium ions alone, is also demonstrated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4943
    Keywords: staphylococcal nuclease ; tetrapeptide ; β-bend models ; conformational analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The tetrapeptide sequence Ala-Asp-Gly-Lys occurs as a type I′ β-bend at residues 94–97 in staphylococcal nuclease. We have synthesized theN-acetyl,N′-methylamide derivative of this tetrapeptide and studied its conformation in solution, using nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. In the synthesis, special attention was paid to the possibility of cyclic aspartimide formation giving rise to mixtures of α- and β-Asp-Gly products. The presence of such a mixture was excluded by infrared, NMR, and other analytical procedures applied to the products and to models for α- and β-linked aspartyl residues. The CD spectra of the protected tetrapeptide in water, methanol, and trifluoroethanol show no evidence of preferred chain conformations. In dimethylsulfoxide-d 6 , however, the NMR spectra are consistent with the presence of a population of conformers in which the Lys and C-terminal NHCH3 amide protons are shielded from solvent. Taken together with the observed3JNH-C α H coupling constants for all residues, this permitted the construction and energetic evaluation of possible conformations in solution. Only one such conformation was fully compatible with the NMR data; this is a type II β-bend in which the Lys and C-terminal NHCH3 amide protons are close to the Ala C=O group and may form bifurcated hydrogen bonds with it. This conformation can be converted into the conformation existing in staphylococcal nuclease by rotating the plane of the Ala-Asp peptide group by about 120° around a line connecting the Ala and Asp Cα atoms and by making small shifts in dihedral angles elsewhere in the peptide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4943
    Keywords: RNase A ; protein fragment ; disulfide-loop formation ; native-like conformation ; protein folding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A 30-residue peptide was obtained from ribonuclease A by chemical cleavage with cyanogen bromide, subsequent sulfitolysis with concomitant S-sulfonation, and finally enzymatic cleavage withStaphylococcus aureus protease. The peptide was converted to the free thiol form by reductive cleavage of the S-sulfo-protecting groups withd,l-dithiothreitol. This peptide consisted of residues 50–79 of the native sequence of ribonuclease A, with the exception that methionine-79 had been converted to homoserine. Included in this sequence are residues cysteine-65 and cysteine-72, which form a disulfide bond in the native enzyme, as well as cysteine-58. This molecule may form one of three possible intramolecular disulfide bonds upon thiol oxidation, viz. one loop of 15 and 2 of 8 residues each. These isomeric peptides were prepared by oxidation with cystamine, 2-aminoethanethiolation of residual thiols, and fractionation by reverse-phase high-performance liquid chromatography. Disulfide pairings were established by mapping the tryptic fragments and confirming their composition by amino acid analysis. After protracted incubation under oxidizing conditions at 25.0°C andp H 8.0, the 26-member ring incorporating the native disulfide bond between residues 65 and 72 is the dominant product. Assuming that equilibrium is established, we infer that local interactions in the sequence of ribonuclease A significantly stabilize the native 8-residue disulfide loop with respect to the non-native 8-residue loop (ΔG°=−1.1±0.1 kcal mole−1). The implications of this observation for the oxidative folding of the intact protein are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4943
    Keywords: Angiotensin II (AII) ; AII receptor ; peptide ligand ; non-peptide antagonists ; binding site ; activation mechanism ; molecular modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The angiotensin II receptor of the AT1-type has been modeled starting from the experimentally determined three-dimensional structure of bacteriorhodopsin as the template. Intermediate 3D structures of rhodopsin andβ 2-adrenergic receptors were built because no direct sequence alignment is possible between the AT1 receptor and bacteriorhodopsin. Docking calculations were carried out on the complex of the modeled receptor with AII, and the results were used to analyze the binding possibilities of DuP753-type antagonistic non-peptide ligands. We confirm that the positively charged Lys199 on helix 5 is crucial for ligand binding, as in our model; the charged side chain of this amino acid interacts strongly with the C-terminal carboxyl group of peptide agonists or with the acidic group at the 2′-position of the biphenyl moiety of DuP753-type antagonists. Several other receptor residues which are implicated in the binding of ligands and the activation of receptor by agonists are identified, and their functional role is discussed. Therefore, a plausible mechanism of receptor activation is proposed. The three-dimensional docking model integrates most of the available experimental observations and helps to plan pertinent site-directed mutagenesis experiments which in turn may validate or modify the present model and the proposed mechanism of receptor activation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4943
    Keywords: Rat galanin ; conformational energy calculations ; Monte Carlo methods ; effect of environment on conformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The conformation of the 29-residue rat galanin neuropeptide was studied using the Monte Carlo with energy minimization (MCM) and electrostatically driven Monte Carlo (EDMC) methods. According to a previously elaborated procedure, the polypeptide chain was first treated in a united-residue approximation, in order to enable extensive exploration of the conformational space to be carried out (with the use of MCM), Then the low-energy united-residue conformations were converted to the all-atom representations, and EDMC simulations were carried out for the all-atom polypeptide chains, using the ECEPP/3 force field with hydration included. In order to estimate the effect of environment on galanin conformation, the low-energy conformations obtained as a result of these simulations were taken as starting structures for further EDMC runs that did not include hydration. The lowest-energy conformation obtained in aqueous solution calculations had a nonhelical N-terminal part packed against the nonpolar face of a residual helix that extended from Pro13 toward the C-terminus. One next lowest-energy structure was a nearly-all-helical conformation, but with a markedly higher energy. In contrast, all of the low-energy conformations in the absence of water were all-helical differing only by the extent to which the helix was kinked around Pro13. These results are in qualitative agreement with the available NMR and CD data of galanin in aqueous and nonaqueous solvents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4943
    Keywords: Protein folding ; backbone structure ; helical structure ; physical factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Amino acid residues in a globular protein fold against one another into a compact structure. We have sought common physical factors within similarly folded backbone structures in such proteins which might influence the folding and which could be used in predicting the backbone structure. The physical factors examined are the 10 orthogonal ones identified by Kideraet al. (1985a). Comparison of the smoothed physical factor profiles between sequences, which have similar backbone structures, shows that there is good agreement among the profiles of helical stretches, but not for other backbone structures that have been examined. This is ascribed to the fact that helical structures involve local interactions, which then require similar physical profiles to form, but that other structures are not so strongly locally determined in the native structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1435-1536
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1435-1536
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of the American Chemical Society 77 (1955), S. 2908-2910 
    ISSN: 1520-5126
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...