ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Unknown
    Basel, Beijing, Wuhan : MDPI
    Keywords: Air Quality and atmospheric composition modeling ; Atmospheric chemical observation and monitoring ; Air quality forecasting ; Air pollutant related epidemiology and exposure studies ; Climate impact on air quality forecasting
    Description / Table of Contents: Forecasting is a vital tool for local health and air quality managers to make informed short-term decisions on remedial and mitigation measures to reduce exposure risks for their residents. Forecasting tools enable them to issue air quality advisories to curb pollution by limiting vehicular traffic by encouraging car-pooling and offering free public transportation. Air quality monitoring from the perspective of air managers serves a dual purpose of evaluating the skill of their forecasting tools and deriving long-term trends of major air pollutants that impact their constituents. Epidemiologists also use long term monitored data to understand air pollution related diseases and mortality rates to support public health policy decisions. This Special Issue reinforces the importance of these tools by leveraging their collective strengths. Public health is under a constant threat by air pollution across the world in various degrees and manifestations. In some countries with rapid economic growth the abrupt increased occurrences of poor air quality over cities and their downwind regions are attracting worldwide attention. The adverse health effects suffered by the public are reflected in billions of dollars in lost productivity, hospital admissions due to contraction and exacerbation of respiratory, asthmatic and cardiovascular diseases, and increases in mortality rates. This is especially true in rapidly developing countries. On the other hand, many cities in developed countries are seeing changes in their atmospheric chemical regimes from nitrogen oxide (NOx) saturated regimes towards NOx limiting regimes. Furthermore, ozone and ozone precursors transported from areas upwind become important source of “background ozone” as local generation of ozone plays a lesser role due to reduced NOx emissions in the developed countries. It is now clear that air pollution is a global problem and that air quality monitoring, forecasting and mitigation should be a local effort conducted in concert with global partners.
    Pages: Online-Ressource (VI, 204 Seiten) , Illustrationen, Diagramme
    Edition: Printed Edition of the Special Issue Published in Atmosphere
    ISBN: 9783038428404
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-05-05
    Description: This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two- day weekend period. The key factors driving design and implementation of this capability were: 1) Integration with already existing ground system autonomous capabilities and systems, 2) The desire to evolve autonomous operations capabilities based upon previous SMEX operations experience 3) Integration with ground station operations - both autonomous and man-tended, 4) Low cost and quick implementation, and 5) End-to-end system robustness. A trade-off study was performed to examine these factors in light of the low-cost, higher-risk SMEX mission philosophy. The study concluded that a STOL (Spacecraft Test and Operations Language) based script, highly integrated with other scripts used to perform autonomous operations, was best suited given the budget and goals of the mission. Each of these factors is discussed to provide an overview of the autonomous operations capabilities implemented for the mission. The capabilities implemented on the WIRE mission are an example of a low-cost, robust, and efficient method for autonomous command loading when implemented with other autonomous features of the ground system. They can be used as a design and implementation template by other small satellite missions interested in evolving toward autonomous and lower cost operations.
    Keywords: Communications and Radar
    Type: Small Satellite Ops; Unknown
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: This paper presents the end-to-end design architecture for an autonomous commanding capability to be used on the Wide Field Infrared Explorer (WIRE) mission for the uplink of command loads during unattended station contacts. The WIRE mission is the fifth and final mission of NASA's Goddard Space Flight Center Small Explorer (SMEX) series to be launched in March of 1999. Its primary mission is the targeting of deep space fields using an ultra-cooled infrared telescope. Due to its mission design WIRE command loads are large (approximately 40 Kbytes per 24 hours) and must be performed daily. To reduce the cost of mission operations support that would be required in order to uplink command loads, the WIRE Flight Operations Team has implemented an autonomous command loading capability. This capability allows completely unattended operations over a typical two-day weekend period.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Spacecraft Ground Control and Data Systems; Brazil
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The Multilayer Model (MLM) has been used for many years to infer dry deposition fluxes from measured trace species concentrations and standard meteorological measurements for national networks in the U.S., including the U.S. Environmental Protection Agency's Clean Air Status and Trends Network (CASTNet). MLM utilizes a resistance analogy to calculate deposition velocities appropriate for whole vegetative canopies, while employing a multilayer integration to account for vertically varying meteorology, canopy morphology and radiative transfer within the canopy. However, the MLM formulation, as it was originally presented and as it has been subsequently employed, contains a non-physical representation related to the leaf-level quasi-laminar boundary layer resistance that affects the calculation of the total canopy resistance. In this note, the non-physical representation of the canopy resistance as originally formulated in MLM is discussed and a revised, physically consistent, formulation is suggested as a replacement. The revised canopy resistance formulation reduces estimates of HNO3 deposition velocities by as much as 38% during mid-day as compared to values generated by the original formulation. Inferred deposition velocities for SO2 and O3 are not significantly altered by the change in formulation (less than 3%). Inferred deposition loadings of oxidized and total nitrogen from CASTNet data may be reduced by 10-20% and 5-10%, respectively, for the Eastern U. S. when employing the revised formulation of MLM as compared to the original formulation.
    Keywords: Geophysics; Environment Pollution
    Type: GSFC-E-DAA-TN21491 , Atmospheric Environment (ISSN 1352-2310); 92; 141-145
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: In the framework of NASA's return to the Moon efforts, the Lunar Reconnaissance Orbiter (LRO) is the first step. It is an unmanned mission to create a comprehensive atlas of the Moon's features and resources necessary to design and build a lunar outpost. LRO is scheduled for launch in April, 2009. LRO carries a payload comprised of six instruments and one technology demonstration. In addition to its scientific mission LRO will use new technologies, systems and flight operations concepts to reduce risk and increase productivity of future missions. As part of the effort to achieve robust and efficient operations, the LRO Mission Operations Team (MOT) will use its Mission Planning System (MPS) to manage the operational activities of the mission during the Lunar Orbit Insertion (LOI) and operational phases of the mission. The MPS, based on GMV's flexplan tool and developed for NASA with Honeywell Technology Solutions (prime contractor), will receive activity and slew maneuver requests from multiple science operations centers (SOC), as well as from the spacecraft engineers. flexplan will apply scheduling rules to all the requests received and will generate conflict free command schedules in the form of daily stored command loads for the orbiter and a set of daily pass scripts that help automate nominal real-time operations.
    Keywords: Astronautics (General)
    Type: Ground Systems Architecture Workshop (GSAW); Mar 23, 2009 - Mar 26, 2009; Torrence, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Purpose of the Space Network Ground Segment Sustainment (SGSS) is to implement a new modern ground segment that will enable the NASA Space Network (SN) to deliver high quality services to the SN community for the future The key SGSS Goals: (1) Re-engineer the SN ground segment (2) Enable cost efficiencies in the operability and maintainability of the broader SN.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: GSFC.CPR.7511.2012 , Ground Systems Architecture Workshop (GSAW-2013) Intensive Ground System; Mar 18, 2013 - Mar 22, 2013; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.
    Keywords: Documentation and Information Science
    Type: 2001 Aerospace Conference; Jan 01, 2001; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Reducing spacecraft ground system operations costs is a major goal in all missions. The Fast Auroral Snapshot (FAST) flight operations team at the NASA/Goddard Spacecraft Flight Center developed in-house scripts and procedures to automate monitoring of critical spacecraft functions. The initial staffing profile of 16x7 was reduced first to 8x5 and then to 'lights out'. Operations functions became an offline review of system performance and the generation of future science plans for subsequent upload to the spacecraft. Lessons learned will be applied to the challenging Triana mission, where 24x7 contact with the spacecraft will be necessary at all times.
    Keywords: Astronautics (General)
    Type: International Telemetric Conference; Oct 23, 2001; Las Vegas, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
  • 10
    Publication Date: 1999-12-01
    Print ISSN: 1352-2310
    Electronic ISSN: 1873-2844
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...