ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Ecosystems 2 (1999), S. 384-394 
    ISSN: 1435-0629
    Keywords: Key words: pelagic ecosystem; structure and function; global ocean; remote sensing; photosynthesis parameters; biogeochemical provinces.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT We propose an operational definition of spatial structure in the oceanic ecosystem; it is equivalent to the large-scale, horizontal distribution of the dominant ecophysiological rate parameters for the questions of interest. In an important, particular case, the relevant rate parameters are those that characterize autotrophic production. In the ocean, these parameters are believed to be distributed in a manner that is not smoothly continuous. Rather, they seem to have a piecewise continuous distribution. This leads to a requirement to partition the ocean into a suite of provinces where the boundaries between the provinces mark the locations of abrupt changes in the magnitudes of the rate parameters. The area covered by a particular province represents an area of common physical forcing, insofar as the forcing is relevant to autotrophic production. The boundaries are taken to be elastic rather than fixed, such that they can respond to variations in forcing. At any given time, the boundaries can be located with the aid of remotely sensed imagery, especially ocean-color imagery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The dependence of phytoplankton photosynthesis on light can be determined routinely during oceanographic cruises. Each light-saturation curve is described by two parameters: the initial slope aB, an index of the efficiency of photosynthesis in weak light, and the assimilation number P*, a measure ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Oceanic new production can be estimated from remotely sensed data on ocean colour and temperature. This approach, which depends on parameterizations developed from ship observations, as well as on satellite data, yields more representative estimates of the large-scale average new production than ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The thermal structure of the surface (mixed) layer of the ocean depends on the various processes acting in it and on it. Heat (sensible and latent) and momentum are exchanged between ocean and atmosphere by turbulent processes acting at the free surface and at the base of the mixed layer5'6. In ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM-based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Valente, André; Sathyendranath, Shubha; Brotas, Vanda; Groom, Steve; Grant, Michael; Taberner, Malcolm; Antoine, David; Arnone, Robert; Balch, William M; Barker, Kathryn; Barlow, Raymond G; Bélanger, Simon; Berthon, Jean-François; Besiktepe, Sukru; Brando, Vittorio E; Canuti, Elisabetta; Chavez, Francisco P; Claustre, Hervé; Crout, Richard; Frouin, Robert; García-Soto, Carlos; Gibb, Stuart; Gould, Richard; Hooker, Stanford B; Kahru, Mati; Klein, Holger; Kratzer, Susanne; Loisel, Hubert; McKee, David; Mitchell, Brian Greg; Moisan, Tiffany; Muller-Karger, Frank E; O'Dowd, Leonie; Ondrusek, Michael; Poulton, Alex J; Repecaud, Michel; Smyth, Timothy J; Sosik, Heidi; Twardowski, Michael S; Voss, Kenneth; Werdell, P Jeremy; Wernand, Marcel R; Zibordi, Giuseppe (2016): A compilation of global bio-optical in situ data for ocean-colour satellite applications. Earth System Science Data, 8(1), 235-252, https://doi.org/10.5194/essd-8-235-2016
    Publication Date: 2019-04-30
    Description: A compiled set of in situ data is important to evaluate the quality of ocean-colour satellite-data records. Here we describe the data compiled for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The data were acquired from several sources (MOBY, BOUSSOLE, AERONET-OC, SeaBASS, NOMAD, MERMAID, AMT, ICES, HOT, GeP&CO), span between 1997 and 2012, and have a global distribution. Observations of the following variables were compiled: spectral remote-sensing reflectances, concentrations of chlorophyll a, spectral inherent optical properties and spectral diffuse attenuation coefficients. The data were from multi-project archives acquired via the open internet services or from individual projects, acquired directly from data providers. Methodologies were implemented for homogenisation, quality control and merging of all data. No changes were made to the original data, other than averaging of observations that were close in time and space, elimination of some points after quality control and conversion to a standard format. The final result is a merged table designed for validation of satellite-derived ocean-colour products and available in text format. Metadata of each in situ measurement (original source, cruise or experiment, principal investigator) were preserved throughout the work and made available in the final table. Using all the data in a validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. By making available the metadata, it is also possible to analyse each set of data separately.
    Type: Dataset
    Format: application/zip, 3 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    AGU
    In:  In: The Polar Oceans and Their Role in Shaping the Global Environment. , ed. by Johannessen, O. M., Muench, R. D. and Overland, J. E. Geophysical Monograph Series, 85 . AGU, pp. 247-254.
    Publication Date: 2012-07-12
    Description: The current status of the Sverdrup theory for the initiation of plankton blooms is examined. A prescription is given for the computation of the Sverdrup critical depth, using recently-published algorithms for mixed-layer primary production and a generalised loss term. Using no further information, the intrinsic rate of increase of phytoplankton biomass in the mixed layer can also be found. This rate, compared against the local frequency of storm occurrence, provides an alternative criterion for the initiation of blooms. The Eulerian (bulk property) methods used to derive these results are contrasted with the Lagrangian Ensemble method. The Lagrangian approach provides one avenue to the elaboration of the Sverdrup criterion to include the effect of processes with characteristic timescales small compared to one day. The incidence of blooms in the apparent absence of vertical stratification is reviewed: it is concluded that these observations do not undermine the basic logic of the Sverdrup theory. However, they do provoke interest in a re-examination of the feedbacks between the physical and biological dynamics in the mixed layer: an example is given. Finally, suggestions are made for further work in this subject area.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-07-23
    Description: The concept of phytoplankton functional types has emerged as a useful approach to classifying phytoplankton. It finds many applications in addressing some serious contemporary issues facing science and society. Its use is not without challenges, however. As noted earlier, there is no universally-accepted set of functional types, and the types used have to be carefully selected to suit the particular problem being addressed. It is important that the sum total of all functional types matches all phytoplankton under consideration. For example, if in a biogeochemical study, we classify phytoplankton as silicifiers, calcifiers, DMS-producers and nitrogen fix- ers, then there is danger that the study may neglect phytoplankton that do not contribute in any significant way to those functions, but may nevertheless be a significant contributor to, say primary production. Such considerations often lead to the adoption of a category of “other phytoplankton” in models, with no clear defining traits assigned them, but that are nevertheless necessary to close budgets on phytoplankton processes. Since this group is a collection of all phytoplankton that defy classification according to a set of traits, it is difficult to model their physi- ological processes. Our understanding of the diverse functions of phytoplankton is still growing, and as we recognize more functions, there will be a need to balance the desire to incorporate the increasing number of functional types in models against observational challenges of identifying and mapping them adequately. Modelling approaches to dealing with increasing functional diversity have been proposed, for example, using the complex adaptive systems theory and system of infinite diversity, as in the work of Bruggemann and Kooijman (2007). But it is unlikely that remote-sensing approaches might be able to deal with anything but a few prominent functional types. As long as these challenges are explicitly addressed, the functional- type concept should continue to fill a real need to capture, in an economic fashion, the diversity in phytoplankton, and remote sensing should continue to be a useful tool to map them. Remote sensing of phytoplankton functional types is an emerging field, whose potential is not fully realised, nor its limitations clearly established. In this report, we provide an overview of progress to date, examine the advantages and limitations of various methods, and outline suggestions for further development. The overview provided in this chapter is intended to set the stage for detailed considerations of remote-sensing applications in later chapters. In the next chapter, we examine various in situ methods that exist for observing phytoplankton functional types, and how they relate to remote-sensing techniques. In the subsequent chapters, we review the theoretical and empirical bases for the existing and emerging remote-sensing approaches; assess knowledge about the limitations, assumptions, and likely accuracy or predictive skill of the approaches; provide some preliminary comparative analyses; and look towards future prospects with respect to algorithm development, validation studies, and new satellite mis- sions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Inbook , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-01-26
    Description: The Colour and Light in the Ocean (CLEO) Workshop, organized by the European Space Agency (ESA) and the Plymouth Marine Laboratory (PML) was held on the ESRIN, the ESA Centre for Earth Observations, at Frascati, Italy on 6-8 September 2016. The workshop is sponsored through selected SEOM (Scientific Exploitation of Operational Missions) projects, including: Pools of Carbon in the Ocean (POCO), Photosynthetically Active Radiation and Primary Production (PPP), Synergistic Exploitation of Hyper- and Multispectral Sentinel-Measurements to Determine Phytoplankton Functional Types (PFT) (SynSenPFT), and Extreme Case-2 Waters (C2X). Additional partner projects of ESA are: Marine Photosynthesis Parameters from Space (MAPPS), a Pathfinder STSE (Support to Science Element) project; and Ocean Colour Climate Change Initiative (OC-CCI) through the CCI (Climate Change Initiative). The objectives of the workshop were to: Evaluate state-of-art Exchange information with other relevant projects and activities Bring together remote sensing community, in situ data providers, modellers and other users Explore applications in marine ecosystem models Plan for the future: Identify challenge areas and research priorities for future EO data exploitation activities Discuss key science issues and make recommendations to strengthen community engagement Shape ideas for potential new ocean-colour products to be developed in the era of the Sentinel-3 mission The workshop was organized in five themes, developed around the activities of the sponsoring projects. Each t heme had oral, poster and discussion sessions. The workshop attracted some 160 registered participants. The workshop served an important need to connect the community, to provide a forum for lively exchange of ideas, and to recommend priorities for future activities in a collective manner. The workshop brought together scientists working on development of novel products from ocean-colour data and the user community, including, notably, the modeling community. One of the key outputs of the workshop is this report, which provides the Scientific Roadmap for future activities. Another planned outcome is a Special Issue on Colour and Light in the Oceans, to be published in the Journal, which will highlight the major scientific results presented at the workshop. Each section of the report, dealing with one of the themes of the workshop, is self-contained, but cross-references to other sections are provided where appropriate. Some recommendations found common resonance across sections, such as the need for continuous, consistent, ocean-colour data streams from satellites for long-term monitoring of the marine ecosystem; the need for an integrated approach, bringing together the remote-sensing community, the in situ data providers and the modeling community; the need to promote development of novel products and advanced sensors; and the importance of providing high-quality and uninterrupted support to the user community, through easy and free access to data and products. Each section discusses the current state of the art, identifies user requirements and gaps, and priorities for research in the short and medium terms. The workshop served the important function of sounding the community’s aspirations, and presenting them in a concise manner for ESA, through this Scientific Roadmap. One of the recommendations from the participants was that CLEO workshops be organized on a regular basis in the future, to develop the ocean-colour community , to promote exchange of new results and ideas, and to plan future activities. We thank all workshop participants, keynote speakers, authors of the oral presentations and the posters, the Scientific Committee and the Organising Committee, and the Session Chairs for all their contributions to the workshop. For the logistical support and local organization and hospitality, we thank the ESRIN Graphics Bureau, Administration, Catering Service and the Events Office, especially Irene Renis, Anne Lisa Pichler and Giulia Vinicola.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Book , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...