ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2020-04-02
    Description: Over the Indian region, aerosol absorption is considered to have a potential impact on the regional climate, monsoon and hydrological cycle. Black carbon (BC) is the dominant absorbing aerosol, whose absorption potential is determined mainly by its microphysical properties, including its concentration, size and mixing state with other aerosol components. The Indo-Gangetic Plain (IGP) is one of the regional aerosol hot spots with diverse sources, both natural and anthropogenic, but still the information on the mixing state of the IGP aerosols, especially BC, is limited and a significant source of uncertainty in understanding their climatic implications. In this context, we present the results from intensive measurements of refractory BC (rBC) carried out over Bhubaneswar, an urban site in the eastern coast of India, which experiences contrasting air masses (the IGP outflow or coastal/marine air masses) in different seasons. This study helps to elucidate the microphysical characteristics of BC over this region and delineates the IGP outflow from the other air masses. The observations were carried out as part of South West Asian Aerosol Monsoon Interactions (SWAAMI) collaborative field experiment during July 2016–May 2017, using a single-particle soot photometer (SP2) that uses a laser-induced incandescence technique to measure the mass and mixing state of individual BC particles and an aerosol chemical speciation monitor (ACSM) to infer the possible coating material. Results highlighted the distinctiveness in aerosol microphysical properties in the IGP air masses. BC mass concentration was highest during winter (December–February) (∼1.94±1.58 µg m−3), when the prevailing air masses were mostly of IGP origin, followed by post-monsoon (October–November) (mean ∼1.34±1.40 µg m−3). The mass median diameter (MMD) of the BC mass size distributions was in the range 0.190–0.195 µm, suggesting mixed sources of BC, and, further, higher values (∼ 1.3–1.8) of bulk relative coating thickness (RCT) (ratio of optical and core diameters) were seen, indicating a significant fraction of highly coated BC aerosols in the IGP outflow. During the pre-monsoon (March–May), when marine/coastal air masses prevailed, BC mass concentration was lowest (∼0.82±0.84 µg m−3), and larger BC cores (MMD 〉 0.210 µm) were seen, suggesting distinct source processes, while RCT was ∼ 1.2–1.3, which may translate into higher extent of absolute coating on BC cores, which may have crucial regional climate implications. During the summer monsoon (July–September), BC size distributions were dominated by smaller cores (MMD ≤ 0.185 µm), with the lowest coating indicating fresher BC, likely from fossil fuel sources. A clear diurnal variation pattern of BC and RCT was noticed in all the seasons, and daytime peak in RCT suggested enhanced coating on BC due to the condensable coating material originating from photochemistry. Examination of submicrometre aerosol chemical composition highlighted that the IGP outflow was dominated by organics (47 %–49 %), and marine/coastal air masses contained higher amounts of sulfate (41 %–47 %), while ammonium and nitrate were seen in minor amounts, with significant concentrations only during the IGP air mass periods. The diurnal pattern of sulfate resembled that of the RCT of rBC particles, whereas organic mass showed a pattern similar to that of the rBC mass concentration. Seasonally, the coating on BC showed a negative association with the mass concentration of sulfate during the pre-monsoon season and with organics during the post-monsoon season. These are the first experimental data on the mixing state of BC from a long time series over the Indian region and include new information on black carbon in the IGP outflow region. These data help in improving the understanding of regional BC microphysical characteristics and their climate implications.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2020-07-22
    Description: During the combined South-West Asian Aerosol–Monsoon Interactions and Regional Aerosol Warming Experiment (SWAAMI–RAWEX), collocated airborne measurements of aerosol number–size distributions in the size (diameter) regime 0.5 to 20 µm and black carbon (BC) mass concentrations were made across the Indo-Gangetic Plain (IGP), for the first time, from three distinct locations, just prior to the onset of the Indian summer monsoon. These measurements provided an east–west transect of region-specific properties of aerosols as the environment transformed from mostly arid conditions of the western IGP (represented by Jodhpur, JDR) having dominance of natural aerosols to the central IGP (represented by Varanasi, VNS) having very high anthropogenic emissions, to the eastern IGP (represented by the coastal station Bhubaneswar, BBR) characterized by a mixture of the IGP outflow and marine aerosols. Despite these, the aerosol size distribution revealed an increase in coarse mode concentration and coarse mode mass fraction (fractional contribution to the total aerosol mass) with the increase in altitude across the entire IGP, especially above the well-mixed region. Consequently, both the mode radii and geometric mean radii of the size distributions showed an increase with altitude. However, near the surface and within the atmospheric boundary layer (ABL), the features were specific to the different subregions, with the highest coarse mode mass fraction (FMC∼72 %) in the western IGP and highest accumulation fraction in the central IGP with the eastern IGP in between. The elevated coarse mode fraction is attributed to mineral dust load arising from local production as well as due to advection from the west. This was further corroborated by data from the Cloud-Aerosol Transport System (CATS) on board the International Space Station (ISS), which also revealed that the vertical extent of dust aerosols reached as high as 5 km during this period. Mass concentrations of BC were moderate (∼1 µg m−3) with very little altitude variation up to 3.5 km, except over VNS where very high concentrations were seen near the surface and within the ABL. The BC-induced atmospheric heating rate was highest near the surface at VNS (∼0.81 K d−1), while showing an increasing pattern with altitude at BBR (∼0.35 K d−1 at the ceiling altitude).
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-17
    Description: Concurrent measurements of the altitude profiles of the concentration of cloud condensation nuclei (CCN), as a function of supersaturation (ranging from 0.2 % to 1.0 %), and aerosol optical properties (scattering and absorption coefficients) were carried out aboard an instrumented aircraft across the Indo-Gangetic Plain (IGP) just prior to the onset of the Indian summer monsoon (ISM) of 2016. The experiment was conducted under the aegis of the combined South-West Asian Aerosol–Monsoon Interactions and Regional Aerosol Warming Experiment (SWAAMI–RAWEX) campaign. The measurements covered coastal, urban and arid environments. In general, the CCN concentration was highest in the central IGP, decreasing spatially from east to west above the planetary boundary layer (PBL), which is ∼1.5 km for the IGP during pre-monsoon period. Despite this, the CCN activation efficiency at 0.4 % supersaturation was, interestingly, the highest over the eastern IGP (∼72 %), followed by that in the west (∼61 %), and it was the least over the central IGP (∼24 %) within the PBL. In general, higher activation efficiency is noticed above the PBL than below it. The central IGP showed remarkably low CCN activation efficiency at all altitudes, which appears to be associated with high black carbon (BC) mass concentration there, indicating the role of anthropogenic sources in suppressing the CCN efficiency. These first-ever CCN measurements over the western IGP, encompassing “the Great Indian Desert” also known as “the Thar Desert”, showed high CCN efficiency, ∼61 % at 0.4 % supersaturation, indicating the hygroscopic nature of the dust. The vertical structure of CCN properties is found to be air mass dependent, with higher activation efficiency even over the central IGP during the prevalence of marine air mass. Wet scavenging associated with precipitation episodes seems to have reduced the CCN activation efficiency below cloud level. An empirical relation has emerged between the CCN concentration and the scattering aerosol index (AI), which would facilitate the prediction of CCN from aerosol optical properties.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-13
    Description: Measurements of the vertical profiles of the optical properties (namely the extinction coefficient and scattering and absorption coefficients respectively σext ∕ σscat ∕ σabs) of aerosols have been made across the Indo-Gangetic Plain (IGP) using an instrumented aircraft operated from three base stations – Jodhpur (JDR), representing the semi-arid western IGP; Varanasi (VNS), the central IGP characterized by significant anthropogenic activities; and the industrialized coastal location in the eastern end of the IGP (Bhubaneswar, BBR) – just prior to the onset of the Indian summer monsoon. The vertical profiles depicted region-specific absorption characteristics, while the scattering characteristics remained fairly uniform across the region, leading to a west–east gradient in the vertical structure of single-scattering albedo (SSA). Integrated from near the ground to 3 km, the highest absorption coefficient and hence the lowest SSA occurred in the central IGP (Varanasi). Size distribution, inferred from the spectral variation of the scattering coefficient, showed a gradual shift from coarse-particle dominance in the western IGP to strong accumulation dominance in the eastern coast with the central IGP coming in between, arising from a change in the aerosol type from a predominantly natural (dust and sea salt) type in the western IGP to a highly anthropogenic type (industrial emissions, fossil fuel and biomass combustion) in the eastern IGP, with the central IGP exhibiting a mixture of both. Aerosol-induced short-wave radiative forcing, estimated using altitude-resolved SSA information, revealed significant atmospheric warming in the central IGP, while a top-of-atmosphere cooling is seen, in general, in the IGP. Atmospheric heating rate profiles, estimated using altitude-resolved SSA and column-averaged SSA, revealed considerable underestimation in the latter case, emphasizing the importance and necessity of having altitude-resolved SSA information as against a single value for the entire column.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-14
    Description: Single scattering albedo (SSA) represents a unique identification of aerosol type and can be a determinant factor in the estimation of aerosol radiative forcing. However, SSA retrievals are highly uncertain due to cloud contamination and aerosol composition. The recent improvement in the SSA retrieval algorithm has combined the superior cloud-masking technique of the Moderate Resolution Imaging Spectroradiometer (MODIS) and the higher sensitivity of the Ozone Monitoring Instrument (OMI) to aerosol absorption. The combined OMI–MODIS algorithm has only been validated over a small spatial and temporal scale. The present study validates the algorithm over global oceans for the period from 2008 to 2012. The geographical heterogeneity in the aerosol type and concentration over the Atlantic Ocean, the Arabian Sea and the Bay of Bengal was useful to delineate the effect of aerosol type on the retrieval algorithm. We also noted that OMI overestimated SSA when absorbing aerosols were present closer to the surface. We attribute this overestimation to data discontinuity in the aerosol height climatology derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. OMI uses predefined aerosol heights over regions where CALIPSO climatology is not present, leading to the overestimation of SSA. The importance of aerosol height was also studied using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The results from the joint retrievals were validated using cruise-based measurements. It was seen that OMI–MODIS SSA retrievals performed better than the OMI only retrieval over the Bay of Bengal during winter, when the aerosols are present closer to the surface. Discrepancy between satellite retrievals and cruise measurements was seen when elevated aerosols were present which might not have been detected by the cruise instruments.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-10
    Description: On account of its strong absorption of solar and terrestrial radiation, black carbon (BC) aerosol is known to impact large-scale systems, such as the Asian monsoon and the Himalayan glaciers, in addition to affecting the thermal structure of the lower atmosphere. While most studies focus on the near-surface abundance and impacts of BC, our study examines the implications of sharp and confined layers of high BC concentration (called elevated BC layers) at altitudes more than 4 km over the Indian region using the online regional chemistry transport model (WRF-Chem) simulations. These elevated BC layers were revealed in the recent in situ measurements using high-altitude balloons carried out on 17 March 2010, 8 January 2011 and 25 April 2011. Our study demonstrates that high-flying aircraft (with emissions from the regionally fine-tuned MACCity inventory) are the most likely cause of these elevated BC layers. Furthermore, we show that such aircraft-emitted BC can be transported to upper tropospheric or lower stratospheric heights ( ∼  17 km) aided by the strong monsoonal convection occurring over the region, which is known to overshoot the tropical tropopause, leading to the injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere. We show observational evidence for such an intrusion of tropospheric BC into the stratosphere over the Indian region using extinction coefficient and particle depolarisation ratio data from CALIOP Lidar on-board the CALIPSO satellite. We hypothesise that such intrusions of BC into the lower stratosphere and its consequent longer residence time in the stratosphere have significant implications for stratospheric ozone, especially considering the already reported ozone-depleting potential of BC.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-24
    Description: Improving the accuracy of regional aerosol climate impact assessment calls for improvement in the accuracy of regional aerosol radiative effect (ARE) estimation. One of the most important means of achieving this is to use spatially homogeneous and temporally continuous datasets of critical aerosol properties, such as spectral aerosol optical depth (AOD) and single scattering albedo (SSA), which are the most important parameters for estimating aerosol radiative effects. However, observations do not provide the above; the space-borne observations though provide wide spatial coverage, are temporal snapshots and suffer from possible sensor degradation over extended periods. On the other hand, the ground-based measurements provide more accurate and temporally continuous data but are spatially near-point observations. Realizing the need for spatially homogeneous and temporally continuous datasets on one hand and the near non-existence of such data over the south Asian region (which is one of the regions where aerosols show large heterogeneity in most of their properties), construction of accurate gridded aerosol products by synthesizing the long-term space-borne and ground-based data has been taken up as an important objective of the South West Asian Aerosol Monsoon Interactions (SWAAMI), a joint Indo-UK field campaign, aiming at characterizing aerosol–monsoon links and their variabilities over the Indian region. In Part 1 of this two-part paper, we present spatially homogeneous gridded datasets of AOD and absorption aerosol optical depth (AAOD), generated for the first time over this region. These data products are developed by merging the highly accurate aerosol measurements from the dense networks of 44 (for AOD) and 34 (for AAOD) ground-based observatories of Aerosol Radiative Forcing over India NETwork (ARFINET) and AErosol RObotic NETwork (AERONET) spread across the Indian region, with satellite-retrieved AOD and AAOD, following statistical assimilation schemes. The satellite data used for AOD assimilation include AODs retrieved from MODerate Imaging Spectroradiometer (MODIS) and Multiangle Imaging SpectroRadiometer (MISR) over the same domain. For AAOD, the ground-based black carbon (BC) mass concentration measurements from the network of 34 ARFINET observatories and satellite-based (Kalpana-1, INSAT-3A) infrared (IR) radiance measurements are blended with gridded AAODs (500 nm, monthly mean) derived from Ozone Monitoring Instrument (OMI)-retrieved AAODs (at 354 and 388 nm). The details of the assimilation methods and the gridded datasets generated are presented in this paper. The merged gridded AOD and AAOD products thus generated are validated against the data from independent ground-based observatories, which were not used for the assimilation process but are representative of different subregions of the complex domain. This validation exercise revealed that the independent ground-based measurements are better confirmed by merged datasets than the respective satellite products. As ensured by assimilation techniques employed, the uncertainties in merged AODs and AAODs are significantly less than those in corresponding satellite products. These merged products also all exhibit important large-scale spatial and temporal features which are already reported for this region. Nonetheless, the merged AODs and AAODs are significantly different in magnitude from the respective satellite products. On the background of above-mentioned quality enhancements demonstrated by merged products, we have employed them for deriving the columnar SSA and analysed its spatiotemporal characteristics. The columnar SSA thus derived has demonstrated distinct seasonal variation over various representative subregions of the study domain. The uncertainties in the derived SSA are observed to be substantially less than those in OMI SSA. On the backdrop of these benefits, the merged datasets are employed for the estimation of regional aerosol radiative effects (direct), the results of which would be presented in a companion paper, Part 2 of this two-part paper.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-13
    Description: On account of its strong absorption of solar and terrestrial radiations, Black Carbon (BC) aerosol is known to impact large scale systems such as the Asian monsoon, Himalayan glaciers etc, besides affecting the thermal structure of lower atmosphere. While most studies focus on the near-surface abundance and impacts of BC, our study, using online regional chemistry transport model (WRF-Chem) simulations, examines the implications of sharp and confined layers of high BC concentration (called elevated BC layers) at altitudes of about 4.5 km and 8 km over the Indian region, as revealed in the recent in-situ measurements using high-altitude balloons. Our study demonstrates, that emissions from high-flying aircrafts are the most likely cause of these elevated BC layers. Furthermore, we show that such aircraft-emitted BC can get transported to even upper tropospheric/lower stratospheric heights (~ 17 km) aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere. We show observational evidence for such an intrusion of tropospheric BC into the stratosphere over Indian region, using extinction coefficient and particle depolarization ratio data from CALIOP Lidar on-board the CALIPSO satellite. We hypothesise that such intrusions of BC to lower stratosphere and its consequent longer residence time in the stratosphere would have significant implications for stratospheric ozone, considering the already reported ozone depleting potential of BC.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-08-20
    Description: The state of mixing of aerosols significantly influence their transformation, deposition, radiative forcing and health effects. We report the realistic (as in the atmosphere) state of mixing and morphology of aerosols at two nearby but contrasting environments; the urban region Bengaluru and a remote region Challakere. Ambient aerosols are collected on filter substrates using a High-Volume Sampler and analysed using Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-Ray spectroscopy (EDX). The results show that the prevailing state of mixing of aerosols is 'core-shell' with SiO2 as the core and Carbon-SiO2-others (Calcium-Magnesium-Aluminium and other dust origin elements) combinations as the shell. On an average, for Bengaluru (Challakere), 66% (51%) of the core surface is coated. The sample-wise mean Carbon content of the composite particles reaches as high as ~26% (~9%) at Bengaluru (Challakere). The ambient black carbon (BC) mass concentration and the amount of rainfall that occurs just prior to the end of sampling are found to significantly influence the Carbon content of the particles. To the best of our knowledge, this is a first-of-its kind study over Indian region, coupling realistic aerosol observations and spectroscopy along with advanced image processing techniques to investigate the state of mixing and morphology of atmospheric aerosols at single particle resolution. This knowledge regarding the real-life state of mixing of aerosols would be useful in constraining the models studying aerosol-radiation interactions.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...