ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 135, pp. 11-17, ISSN: 1385-1101
    Publication Date: 2018-11-09
    Description: Explaining species diversity as a function of ecosystem variability is a long-term discussion in community-ecology research. Here, we aimed to establish a causal relationship between ecosystem variability and phytoplankton diversity in a shallow-sea ecosystem. We used long-term data on biotic and abiotic factors from Helgoland Roads, along with climate data to assess the effect of ecosystem variability on phytoplankton diversity. A point cumulative semi-variogram method was used to estimate the long-term ecosystem variability. A Markov chain model was used to estimate dynamical processes of species i.e. occurrence, absence and outcompete probability. We identified that the 1980s was a period of high ecosystem variability while the last two decades were comparatively less variable. Ecosystem variability was found as an important predictor of phytoplankton diversity at Helgoland Roads. High diversity was related to low ecosystem variability due to non-significant relationship between probability of a species occurrence and absence, significant negative relationship between probability of a species occurrence and probability of a species to be outcompeted by others, and high species occurrence at low ecosystem variability. Using an exceptional marine long-term data set, this study established a causal relationship between ecosystem variability and phytoplankton diversity.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-02
    Description: The ability to access user-friendly, low-cost instrumentation remains a limiting factor in coastal ocean observing. The majority of currently available marine observation equipment is difficult to deploy, costly to operate, and requires specific technical skills. Moreover, a harmonized observation program for the world’s coastal waters has not yet been established despite the efforts of the global ocean organizations. Global observational systems are mainly focused on open ocean waters and do not include coastal and shelf areas, where models and satellites require large data sets for their calibration and validation. Fortunately, recent technological advances have created opportunities to improve sensors, platforms, and communications that will enable a step-change in coastal ocean observing, which will be driven by a decreasing cost of the components, the availability of cheap housing, low-cost controller/data loggers based on embedded systems, and low/no subscription costs for LPWAN communication systems. Considering the above necessities and opportunities, POGO’s OpenMODs project identified a series of general needs/requirements to be met in an Open science development framework. In order to satisfy monitoring and research necessities, the sensors to be implemented must be easily interfaced with the data acquisition and transmission system, as well as compliant with accuracy and stability requirements. Here we propose an approach to co-design a cost-effective observing modular instrument architecture based on available low-cost measurement and data transmission technologies, able to be mounted/operated on various platforms. This instrument can fit the needs of a large community that includes scientific research (including those in developing countries), non-scientific stakeholders, and educator
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-07-09
    Description: Global climate change is a key driver of change in coastal waters with clear effects on biological communities and marine ecosystems. Human activities in combination with climate change exert a tremendous pressure on marine ecosystems and threaten their integrity, structure, and functioning. The protection of these ecosystems is a major target of the 14th United Nations sustainable development goal “Conserve and sustainably use the oceans, seas and marine resources for sustainable development.” However, due to the complexity of processes and interactions of stressors, the status assessment of ecosystems remains a challenge. Holistic food web models, including biological and environmental data, could provide a suitable basis to assess ecosystem health. Here, we review climate change impacts on different trophic levels of coastal ecosystems ranging from plankton to ecologically and economically important fish and shellfish species. Furthermore, we show different food web model approaches, their advantages and limitations. To effectively manage coastal ecosystems, we need both a detailed knowledge base of each trophic level and a holistic modeling approach for assessment and prediction of future scenarios on food web-scales. A new model approach with a seamless coupling of physical ocean models and food web models could provide a future tool for guiding ecosystem-based management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ELSEVIER SCI LTD
    In:  EPIC3Ocean & Coastal Management, ELSEVIER SCI LTD, 148, pp. 1-8, ISSN: 0964-5691
    Publication Date: 2018-02-16
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-04-15
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    ELSEVIER SCIENCE BV
    In:  EPIC3Journal of Sea Research, ELSEVIER SCIENCE BV, 135, pp. 11-17, ISSN: 1385-1101
    Publication Date: 2018-11-08
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-15
    Description: The predictions of the competitive exclusion principle about the number of coexisting species not exceeding the number of limiting resources in equilibrium constitute an ecological puzzle for phytoplankton ecosystems. Here we present a synthesizing unit (SU) based competition model taking co-limitation into account, which is the extension of the competition model developed by Dutta et al. (2014).The study aims at understanding the mechanisms of violation of competitive exclusion principle for phytoplankton species with seasonal environmental forcing when multiple resource limitation is taken into account and species growth is formulated based on SU. We also explore the role of changing environmental conditions on species coexistence on a seasonal and a decadal time scale by linking the model forcing to the Helgoland Roads Time Series data sets. For the first time, based on the Helgoland Roads data, we are able to find a realistic parameterization for the phytoplankton competition model where growth is formulated using SU concept. Our study confirms that more species than limiting resources can coexist with seasonal variations of environmental conditions. This supersaturation is related to periodic changes in species’ biomass, variation in interspecific competition and niche configuration, nonlinear functional response and the position of resource supply within the convex hull of species’ resource uptake rate. Changes in environmental conditions within realistic ranges do not prevent the coexistence of species rather it slightly changes species’ biomass and turnover time. This study also confirms that our model with SU based species growth performs better than species competition model where multiple resource limitation is formulated based on the product of several Monod functions. Our study has created a new avenue for phytoplankton coexistence research and the results might be helpful to answer the complex questions on species diversity maintenance in nature.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  prabalims@gmail.com | http://aquaticcommons.org/id/eprint/4616 | 2663 | 2020-10-11 21:12:49 | 4616
    Publication Date: 2021-07-05
    Description: Climate change is amongst the most dreaded problems of the newmillennium. Bangladesh is a coastal country bounded by Bay ofBengal on its southern part and here natural disasters are anongoing part of human life. This paper discusses about the possibleimpact of climate change through tropical cyclones, storm surges,coastal erosion and sea level rise in the coastal community ofBangladesh and how they cope with these extreme events by thehelp of mangrove ecosystem. Both qualitative and quantitativediscussions are made by collected data from different researchwork those are conducted in Bangladesh. Mangrove ecosystemprovides both goods and services for coastal community, helps toimprove livelihood options and protect them from natural disasterby providing variety of environmental support
    Description: Institute of Marine Sciences and Fisheries, University of Chittagong
    Description: Climate Change issue of Bangladesh
    Keywords: Atmospheric Sciences ; Environment
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 208-225
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-04-06
    Description: Major achievements The feedback provided by potential users on their needs was very much appreciated. They underlined the importance of having: ● an easy to deploy instrument (i.e.: from small fishing boats); ● multi-parameter sensors in ONE device; ● less maintenance effort and prioritized the variables to measure. Although, there are technical limitations and different solutions and there is no one tool that can do everything, which is low cost, has high resolution and low maintenance, the outcomes of the platforms/sensors/communications working group meet the main requirements that emerged. Priority was given to: ● a platform that will operate in drifter mode which is extremely easy to deploy and perfect for studies associated with search and rescue operations (another need that has emerged). It also constantly guarantees the knowledge of the instrument position. The platform can be easily converted into the moored mode. ● temperature and pressure sensors. The sensors will be low -cost with the idea to replace them rather than calibrate them; ● LoRaWAN communications preferably with Bluetooth integration for the in-situ download of the data.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Miscellaneous , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-06-21
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...