ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Folini, Doris; Schwarz, Matthias; Hakuba, Maria Z; Sanchez-Lorenzo, Arturo (2017): The Global Energy Balance Archive (GEBA) version 2017: a database for worldwide measured surface energy fluxes. Earth System Science Data, 9(2), 601-613, https://doi.org/10.5194/essd-9-601-2017
    Publication Date: 2024-02-16
    Description: The Global Energy Balance Archive (GEBA) is a database for the central storage of the worldwide measured energy fluxes at the Earth's surface, maintained at ETH Zurich (Switzerland). This paper documents the status of the GEBA version 2017 dataset, presents the new web interface and user access, and reviews the scientific impact that GEBA data had in various applications. GEBA has continuously been expanded and updated and contains in its 2017 version around 500.000 monthly mean entries of various surface energy balance components measured at 2500 locations. The database contains observations from 15 surface energy flux components, with the most widely measured quantity available in GEBA being the shortwave radiation incident at the Earth's surface (global radiation). Many of the historic records extend over several decades. GEBA contains monthly data from a variety of sources, namely from the World Radiation Data Centre (WRDC) in St. Petersburg, from national weather services, from different research networks (BSRN, ARM, SURFRAD), from peer-reviewed publications, project and data reports, and from personal communications. Quality checks are applied to test for gross errors in the dataset. GEBA has played a key role in various research applications, such as in the quantification of the global energy balance, in the discussion of the anomalous atmospheric shortwave absorption, and in the detection of multi-decadal variations in global radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible through the internet via http://www.geba.ethz.ch.
    Type: Dataset
    Format: application/zip, 1.4 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Although solar radiation at the surface plays a determinant role in carbon discrimination in tree rings, stable carbon isotope chronologies (δ13C) have often been interpreted as a temperature proxy due to the co-variability of temperature and surface solar radiation. Furthermore, even when surface solar radiation is assumed to be the main driver of 13C discrimination in tree rings, δ13C records have been calibrated against sunshine duration or cloud cover series for which longer observational records exists. In this study, we use different instrumental and satellite data over northeast Spain (southern Europe) to identify the main driver of tree-ring 13C discrimination in this region. Special attention is paid to periods in which the co-variability of those climate variables may have been weaker, such as years after large volcanic eruptions. The analysis identified surface solar radiation as the main driver of tree-ring δ13C changes in this region, although the influence of other climatic factors may not be negligible. Accordingly, we suggest that a reconstruction of SSR over the last 600 years is possible. The relation between multidecadal variations of an independent temperature reconstruction and surface solar radiation in this region shows no clear sign, and warmer (colder) periods may be accompanied by both higher and lower surface solar radiation. However, our reconstructed records of surface solar radiation reveals a sunnier Little Ice Age in agreement with other δ13C tree-ring series used to reconstruct sunshine duration in central and northern Europe.
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2015-08-07
    Description: ABSTRACT This article presents a climatology of total cloud cover (TCC) in the area of the three inland Eurasian seas (Black, Caspian, and Aral Sea). Analyses are performed on the basis of 20 years of data (1991–2010), collected from almost 200 ground stations. Average TCC is 49%, with broad spatial and seasonal variability: minimum TCC values are found in summer and to the southeast, whereas maximum values correspond to winter and to the northwest. For the whole area, linear trend analyses show that TCC did not vary during the study period. We only detected a statistically significant positive trend (+1.2% decade −1 ) in autumn. We obtained different results for the regions delimited by means of a principal component analysis: a clear decrease, both for the annual, spring, and summer series, was detected for the south of Black Sea, while increasing TCC was found for the annual, autumn, and winter series in the north Caucasus and the west and north of Black Sea. We also analysed the TCC data from global gridded products, including satellite projects [International Satellite Cloud Climatology Project (ISCCP), Pathfinder Atmospheres Extended (PATMOS-x), cLoud, Albedo & Radiation (CLARA)], reanalyses [ERA-interim, National Centers for Environmental Prediction/Department of Energy (NCEP/DOE), Modern-Era Retrospective Analysis for Research and Applications (MERRA)], and surface observations [Climatic Research Unit (CRU)]. Although all these products capture the seasonal evolution over the study area, they differ substantially both among them and in relation to the ground observations: reanalyses produce much lower values of TCC, while ISCCP and CLARA provide a summer minimum that is too high. Trend analyses applied to these data generally showed a decrease in TCC; only CRU and NCEP/DOE tally with the ground data as regards the absence of overall trends. These results are discussed in relation to previous studies presenting trends of other variables such as sunshine duration, diurnal temperature range, or precipitation; we also discuss the connections with changes in synoptic patterns and environmental changes, in particular in the Aral Sea region.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-08-27
    Description: ABSTRACT This work analysed the changes in air temperature in 25 meteorological stations in the Altiplano and the surrounding Andean slopes of Bolivia and Peru, and their relationship with El Niño-Southern Oscillation (SO) and the Pacific Decadal Oscillation (PDO). The analysis focused on annual, warm season (DJF) and cold season (JJA) maximum and minimum temperatures. All analyses were undertaken during 1965–2012, but some analyses were also from 1945 and 1955 when data were available. Principal component analysis was applied to the annual and seasonal series to identify spatial differences of changes in maximum and minimum air temperature. There was an overall increase of temperatures since the mid-20th century. The most intense and spatially coherent warming was observed for annual and warm season maximum temperature, with warming rates from 0.15 to 0.25 °C decade −1 . Changes in the cold season maximum temperature were more heterogeneous, and statistically significant trends were mostly in the Bolivian Altiplano. Minimum temperatures increased, but there was higher spatial variability and lower rates of warming. Maximum temperature was negatively correlated with the Southern Oscillation index (SO) in the warm season, and positively correlated with the SO in the cold season; there were less statistically significant correlations with the PDO, that exhibited inverse sign than those for SO. The strongest correlations were in the region near Lake Titicaca. The negative correlation of minimum temperatures with SO and the positive correlation of minimum temperatures with PDO were lower than the observed for maximum temperature. The changes in temperature and correlations with SO and PDO were highly dependent on the selected period, with stronger trends in the last 30–40 years. This suggests reinforcement of warming rates that cannot be only explained by SO and PDO variability.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-01-23
    Description: Temperature anomalies in the lower stratosphere (namely, at 50-hPa) poleward of 30°N (hereafter, T 50 ) are analysed from reanalysis daily products (i.e. ERA-40 and NCEP/NCAR) in order to detect those regions with statistically significant trends of T 50 during the common 1957–2002 period. We also analyse radiosonde data in order to validate the reanalyses results. The analyses are conducted for the extended polar winter (i.e. from November to May) in order to relate T 50 changes to the northern polar vortex variability. In relation to the previous literature, the novelty of this study is double: first, temporal evolution is considered according to regions with similar T 50 temporal variability in the Northern Hemisphere; second, trend analyses of stratospheric temperatures are obtained with the use of running windows with variable width of each principal component series computed from monthly mean values. Two main stratospheric regions were identified from both reanalyses, with a statistically significant cooling within the study period: one over the high latitudes and a second one tracing a subtropical ring. The first one was detected in November, December and May during several decades, particularly at the beginning and in the middle of the study period (i.e. 1957–1985). The second region (i.e. the subtropical ring) showed overall cooling for all months along the study period. In addition, the lower stratospheric temperature over northern Europe exhibited an outstanding cooling in May for the whole study period. The results obtained from both reanalyses are practically identical, a fact that provides robustness thereto. Radiosonde data confirm the above-mentioned results, but the magnitude of the trends given by reanalysis products is substantially overestimated in the winter months over high latitudes.
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-04-23
    Description: A data set of quality checked daily sunshine duration measurements was collected from 104 Italian sites over the 1936 to 2013 period. Monthly mean values were homogenized, projected onto a grid and subjected to Principle Component Analysis, which identified two significantly different regions: North and South. Sunshine duration temporal evolution is presented and possible reasons for differences between the two regions are discussed in the light of a comparison with the trends found in observations of total cloud cover and with results from two neighboring regions: the Alps and Spain. In addition, trends for irradiance records, estimated from sunshine duration records using the Ångström–Prescott formula, are presented too. The major feature of the trends, an increase in sunshine duration from the mid 1980's, was common to both northern and southern Italy; the decrease in the preceding 30 year period was not, as northern Italy had a lower rate of decrease than southern Italy. The few records available during the earliest period of the data set indicate that sunshine duration in Italy increased from the mid 1930's to the mid 1950's. The further steps needed to identify and quantify the mechanisms giving rise to the observed trends and to the reported regional differences in dimming and brightening are outlined.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-07
    Description: Global radiation is a fundamental source of energy in the climate system. A significant impact of global radiation on temperature change is expected due to the widespread dimming/brightening phenomenon observed since the second half of the 20th century. This work describes the analysis of 312 stations with sunshine duration (SD) series, a proxy for global radiation, and temperature series in the European Climate Assessment & Dataset (ECA&D) with data over the period 1961–2010. The relationship between SD and temperature series is analysed for four temperature variables: maximum (Tmax), minimum (Tmin), mean temperature (Tmean), and diurnal temperature range (DTR). The analyses are performed on annual and seasonal basis. The results show strong positive correlations between SD and temperatures over Europe, with highest correlation for DTR and Tmax during the summer period. These results confirm the strong relationship between SD and temperature trends over Europe since the second half of the 20th century. This study supports previous suggestions that dimming (brightening) has partially decreased (increased) temperatures thereby modulating the greenhouse gas induced warming rates over Europe.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-01-22
    Description: We report the suitability of sunshine duration (SD) records as a proxy for the reconstruction of atmospheric aerosol content, for which little information exists, especially prior to the 1980s. Specifically, we have treated cloudless summer days in 16 stations throughout Spain. For almost all sites we find statistically significant relationships between aerosol optical depth (AOD), and daily SD. The correlation coefficient presents a mean value of −0.72, and slope values of the linear regressions are within the range [−0.11, −0.36]. The relationships are used to generate AOD series back to the 1960s (to the 1920s for Madrid). These reconstructed series show an increase in AOD from the mid-1960s to the 1980s, followed by a decrease until the present, in agreement with changes in anthropogenic aerosol emissions and with opposite trends of solar irradiance. The method can be used to reconstruct AOD from the late 19 th century at many stations worldwide.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...